Java 类名:com.alibaba.alink.operator.batch.classification.XGBoostPredictBatchOp
Python 类名:XGBoostPredictBatchOp
功能介绍
XGBoost 组件是在开源社区的基础上进行包装,使功能和 PAI 更兼容,更易用。
XGBoost 算法在 Boosting 算法的基础上进行了扩展和升级,具有较好的易用性和鲁棒性,被广泛用在各种机器学习生产系统和竞赛领域。
当前支持分类,回归和排序。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| pluginVersion | 插件版本号 | 插件版本号 | String | | | “1.5.1” |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
df = pd.DataFrame([
[0, 1, 1.1, 1.0],
[1, -2, 0.9, 2.0],
[0, 100, -0.01, 3.0],
[1, -99, 0.1, 4.0],
[0, 1, 1.1, 5.0],
[1, -2, 0.9, 6.0]
])
batchSource = BatchOperator.fromDataframe(
df, schemaStr='y int, x1 int, x2 double, x3 double'
)
streamSource = StreamOperator.fromDataframe(
df, schemaStr='y int, x1 int, x2 double, x3 double'
)
trainOp = XGBoostTrainBatchOp()\
.setNumRound(1)\
.setPluginVersion('1.5.1')\
.setLabelCol('y')\
.linkFrom(batchSource)
predictBatchOp = XGBoostPredictBatchOp()\
.setPredictionDetailCol('pred_detail')\
.setPredictionCol('pred')\
.setPluginVersion('1.5.1')
predictStreamOp = XGBoostPredictStreamOp(trainOp)\
.setPredictionDetailCol('pred_detail')\
.setPredictionCol('pred')\
.setPluginVersion('1.5.1')
predictBatchOp.linkFrom(trainOp, batchSource).print()
predictStreamOp.linkFrom(streamSource).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.XGBoostPredictBatchOp;
import com.alibaba.alink.operator.batch.classification.XGBoostTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.classification.XGBoostPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class XGBoostTrainBatchOpTest {
@Test
public void testXGBoostTrainBatchOp() throws Exception {
List <Row> data = Arrays.asList(
Row.of(0, 1, 1.1, 1.0),
Row.of(1, -2, 0.9, 2.0),
Row.of(0, 100, -0.01, 3.0),
Row.of(1, -99, 0.1, 4.0),
Row.of(0, 1, 1.1, 5.0),
Row.of(1, -2, 0.9, 6.0)
);
BatchOperator <?> batchSource = new MemSourceBatchOp(data, "y int, x1 int, x2 double, x3 double");
StreamOperator <?> streamSource = new MemSourceStreamOp(data, "y int, x1 int, x2 double, x3 double");
BatchOperator <?> trainOp = new XGBoostTrainBatchOp()
.setNumRound(1)
.setPluginVersion("1.5.1")
.setLabelCol("y")
.linkFrom(batchSource);
BatchOperator <?> predictBatchOp = new XGBoostPredictBatchOp()
.setPredictionDetailCol("pred_detail")
.setPredictionCol("pred")
.setPluginVersion("1.5.1");
StreamOperator <?> predictStreamOp = new XGBoostPredictStreamOp(trainOp)
.setPredictionDetailCol("pred_detail")
.setPredictionCol("pred")
.setPluginVersion("1.5.1");
predictBatchOp.linkFrom(trainOp, batchSource).print();
predictStreamOp.linkFrom(streamSource).print();
StreamOperator.execute();
}
}