Java 类名:com.alibaba.alink.operator.batch.dataproc.RebalanceBatchOp
Python 类名:RebalanceBatchOp
功能介绍
该组件对数据进行 rebalance。
实现原理
将数据按轮转(round-robin)的方式划分分区,后续每个 worker 处理一个分区,各个分区间负载相等。
可以用于优化数据倾斜带来的性能问题。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | 
|---|---|---|---|---|---|---|
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["0,0,0"],["0.1,0.1,0.1"],["0.2,0.2,0.2"],["9,9,9"],["9.1,9.1,9.1"],["9.2,9.2,9.2"]])inOp = BatchOperator.fromDataframe(df, schemaStr='Y string')inOp.link(RebalanceBatchOp()).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.RebalanceBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class RebalanceBatchOpTest {@Testpublic void testRebalanceBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("0,0,0"),Row.of("0.1,0.1,0.1"),Row.of("0.2,0.2,0.2"),Row.of("9,9,9"),Row.of("9.1,9.1,9.1"),Row.of("9.2,9.2,9.2"));BatchOperator <?> inOp = new MemSourceBatchOp(df, "Y string");inOp.link(new RebalanceBatchOp()).print();}}
运行结果
| Y | | —- |
| 0,0,0 |
| 0.1,0.1,0.1 |
| 0.2,0.2,0.2 |
| 9,9,9 |
| 9.1,9.1,9.1 |
| 9.2,9.2,9.2 |
