Java 类名:com.alibaba.alink.operator.batch.dataproc.StringIndexerTrainBatchOp
Python 类名:StringIndexerTrainBatchOp

功能介绍

StringIndexer训练组件的作用是训练一个模型用于将单列字符串映射为整数。
如将一列映射为整数,需指定 setSelectedCol 设定。
同时,该组件支持输入多列,生成一个映射词典,通过 setSelectedCols 设定其他需要补充的列名。
特征的排列顺序支持 random,frequency_asc,frequency_desc,alphabet_asc,alphabet_desc 五种排序方法。
注意:输入多列时,所有列必须为相同格式。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
selectedCol 选中的列名 计算列对应的列名 String 所选列类型为 [INTEGER, LONG, STRING]
modelName 模型名字 模型名字 String
selectedCols 选中的列名数组 计算列对应的列名列表 String[] 所选列类型为 [INTEGER, LONG, STRING] null
stringOrderType Token排序方法 Token排序方法 String “RANDOM”, “FREQUENCY_ASC”, “FREQUENCY_DESC”, “ALPHABET_ASC”, “ALPHABET_DESC” “RANDOM”

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df = pd.DataFrame([
  5. ["football", "apple"],
  6. ["football", "apple"],
  7. ["football", "apple"],
  8. ["basketball", "apple"],
  9. ["basketball", "apple"],
  10. ["tennis", "pair"],
  11. ["tennis", "pair"],
  12. ["pingpang", "banana"],
  13. ["pingpang", "banana"],
  14. ["baseball", "banana"]
  15. ])
  16. data = BatchOperator.fromDataframe(df, schemaStr='f0 string,f1 string')
  17. stringindexer = StringIndexerTrainBatchOp() \
  18. .setSelectedCol("f0") \
  19. .setSelectedCols(["f1"]) \
  20. .setStringOrderType("alphabet_asc")
  21. model = stringindexer.linkFrom(data)
  22. model.print()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.dataproc.StringIndexerTrainBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import org.junit.Test;
  6. import java.util.Arrays;
  7. import java.util.List;
  8. public class StringIndexerTrainBatchOpTest {
  9. @Test
  10. public void testAlphabetAsc() throws Exception {
  11. List <Row> df = Arrays.asList(
  12. Row.of("football", "apple"),
  13. Row.of("football", "apple"),
  14. Row.of("football", "apple"),
  15. Row.of("basketball", "apple"),
  16. Row.of("basketball", "apple"),
  17. Row.of("tennis", "pair"),
  18. Row.of("tennis", "pair"),
  19. Row.of("pingpang", "banana"),
  20. Row.of("pingpang", "banana"),
  21. Row.of("baseball", "banana")
  22. );
  23. BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string");
  24. BatchOperator <?> stringindexer = new StringIndexerTrainBatchOp()
  25. .setSelectedCol("f0")
  26. .setSelectedCols("f1")
  27. .setStringOrderType("alphabet_asc");
  28. BatchOperator model = stringindexer.linkFrom(data);
  29. model.print();
  30. }
  31. }

运行结果

模型表:

| token | token_index | | —- | —- |

| pingpang | 6 |

| banana | 1 |

| baseball | 2 |

| basketball | 3 |

| pair | 5 |

| apple | 0 |

| football | 4 |

| tennis | 7 |