Java 类名:com.alibaba.alink.operator.stream.classification.NaiveBayesTextPredictStreamOp
Python 类名:NaiveBayesTextPredictStreamOp
功能介绍
训练一个朴素贝叶斯文本分类模型用于多分类任务。
使用方式
该组件是预测组件,需要配合预测组件 NaiveBayesTextTrainBatchOp 使用。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
["$31$0:1.0 1:1.0 2:1.0 30:1.0","1.0 1.0 1.0 1.0", '1'],
["$31$0:1.0 1:1.0 2:0.0 30:1.0","1.0 1.0 0.0 1.0", '1'],
["$31$0:1.0 1:0.0 2:1.0 30:1.0","1.0 0.0 1.0 1.0", '1'],
["$31$0:1.0 1:0.0 2:1.0 30:1.0","1.0 0.0 1.0 1.0", '1'],
["$31$0:0.0 1:1.0 2:1.0 30:0.0","0.0 1.0 1.0 0.0", '0'],
["$31$0:0.0 1:1.0 2:1.0 30:0.0","0.0 1.0 1.0 0.0", '0'],
["$31$0:0.0 1:1.0 2:1.0 30:0.0","0.0 1.0 1.0 0.0", '0']
])
batchData = BatchOperator.fromDataframe(df_data, schemaStr='sv string, dv string, label string')
# stream data
streamData = StreamOperator.fromDataframe(df_data, schemaStr='sv string, dv string, label string')
# train op
ns = NaiveBayesTextTrainBatchOp().setVectorCol("sv").setLabelCol("label")
model = batchData.link(ns)
# predict op
predictor = NaiveBayesTextPredictStreamOp(model).setVectorCol("sv").setReservedCols(["sv", "label"]).setPredictionCol("pred")
predictor.linkFrom(streamData).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.NaiveBayesTextTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.classification.NaiveBayesTextPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class NaiveBayesTextPredictStreamOpTest {
@Test
public void testNaiveBayesTextPredictStreamOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of("$31$0:1.0 1:1.0 2:1.0 30:1.0", "1.0 1.0 1.0 1.0", "1"),
Row.of("$31$0:1.0 1:1.0 2:0.0 30:1.0", "1.0 1.0 0.0 1.0", "1"),
Row.of("$31$0:1.0 1:0.0 2:1.0 30:1.0", "1.0 0.0 1.0 1.0", "1"),
Row.of("$31$0:1.0 1:0.0 2:1.0 30:1.0", "1.0 0.0 1.0 1.0", "1"),
Row.of("$31$0:0.0 1:1.0 2:1.0 30:0.0", "0.0 1.0 1.0 0.0", "0"),
Row.of("$31$0:0.0 1:1.0 2:1.0 30:0.0", "0.0 1.0 1.0 0.0", "0"),
Row.of("$31$0:0.0 1:1.0 2:1.0 30:0.0", "0.0 1.0 1.0 0.0", "0")
);
BatchOperator <?> batchData = new MemSourceBatchOp(df_data, "sv string, dv string, label string");
StreamOperator <?> streamData = new MemSourceStreamOp(df_data, "sv string, dv string, label string");
BatchOperator <?> ns = new NaiveBayesTextTrainBatchOp().setVectorCol("sv").setLabelCol("label");
BatchOperator <?> model = batchData.link(ns);
StreamOperator <?> predictor = new NaiveBayesTextPredictStreamOp(model).setVectorCol("sv").setReservedCols(
"sv",
"label").setPredictionCol("pred");
predictor.linkFrom(streamData).print();
StreamOperator.execute();
}
}
运行结果
| sv | label | pred | | —- | —- | —- |
| “$31$0:1.0 1:1.0 2:1.0 30:1.0” | 1 | 1 |
| “$31$0:1.0 1:1.0 2:0.0 30:1.0” | 1 | 1 |
| “$31$0:1.0 1:0.0 2:1.0 30:1.0” | 1 | 1 |
| “$31$0:1.0 1:0.0 2:1.0 30:1.0” | 1 | 1 |
| “$31$0:0.0 1:1.0 2:1.0 30:0.0” | 0 | 0 |
| “$31$0:0.0 1:1.0 2:1.0 30:0.0” | 0 | 0 |
| “$31$0:0.0 1:1.0 2:1.0 30:0.0” | 0 | 0 |