Java 类名:com.alibaba.alink.operator.batch.sql.DistinctBatchOp
Python 类名:DistinctBatchOp
功能介绍
对批式数据进行sql的DISTINCT操作。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
['Ohio', 2000, 1.5],
['Ohio', 2001, 1.7],
['Ohio', 2002, 3.6],
['Nevada', 2001, 2.4],
['Nevada', 2002, 2.9],
['Nevada', 2003, 3.2]
])
batch_data = BatchOperator.fromDataframe(df, schemaStr='f1 string, f2 bigint, f3 double')
batch_data.select('f1').link(DistinctBatchOp()).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.batch.sql.DistinctBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class DistinctBatchOpTest {
@Test
public void testDistinctBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("Ohio", 2000, 1.5),
Row.of("Ohio", 2001, 1.7),
Row.of("Ohio", 2002, 3.6),
Row.of("Nevada", 2001, 2.4),
Row.of("Nevada", 2002, 2.9),
Row.of("Nevada", 2003, 3.2)
);
BatchOperator <?> batch_data = new MemSourceBatchOp(df, "f1 string, f2 int, f3 double");
batch_data.select("f1").link(new DistinctBatchOp()).print();
}
}
运行结果
| f1 | | —- |
| Nevada |
| Ohio |