Java 类名:com.alibaba.alink.operator.batch.sql.DistinctBatchOp
Python 类名:DistinctBatchOp

功能介绍

对批式数据进行sql的DISTINCT操作。

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df = pd.DataFrame([
  5. ['Ohio', 2000, 1.5],
  6. ['Ohio', 2001, 1.7],
  7. ['Ohio', 2002, 3.6],
  8. ['Nevada', 2001, 2.4],
  9. ['Nevada', 2002, 2.9],
  10. ['Nevada', 2003, 3.2]
  11. ])
  12. batch_data = BatchOperator.fromDataframe(df, schemaStr='f1 string, f2 bigint, f3 double')
  13. batch_data.select('f1').link(DistinctBatchOp()).print()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  4. import com.alibaba.alink.operator.batch.sql.DistinctBatchOp;
  5. import org.junit.Test;
  6. import java.util.Arrays;
  7. import java.util.List;
  8. public class DistinctBatchOpTest {
  9. @Test
  10. public void testDistinctBatchOp() throws Exception {
  11. List <Row> df = Arrays.asList(
  12. Row.of("Ohio", 2000, 1.5),
  13. Row.of("Ohio", 2001, 1.7),
  14. Row.of("Ohio", 2002, 3.6),
  15. Row.of("Nevada", 2001, 2.4),
  16. Row.of("Nevada", 2002, 2.9),
  17. Row.of("Nevada", 2003, 3.2)
  18. );
  19. BatchOperator <?> batch_data = new MemSourceBatchOp(df, "f1 string, f2 int, f3 double");
  20. batch_data.select("f1").link(new DistinctBatchOp()).print();
  21. }
  22. }

运行结果

| f1 | | —- |

| Nevada |

| Ohio |