Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorMinMaxScalerTrainBatchOp
Python 类名:VectorMinMaxScalerTrainBatchOp
功能介绍
vector归一化是对vector数据进行归一化处理的组件, 将数据归一到minValue和maxValue之间,value最终结果为 (value - min) / (max - min) * (maxValue - minValue) + minValue,最终结果的范围为[minValue, maxValue]。
minValue和maxValue由用户指定,默认为0和1。输入的向量维度可以不相同。
该组件为训练组件,生成的结果为模型。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
max | 归一化的上界 | 归一化的上界 | Double | 1.0 | ||
min | 归一化的下界 | 归一化的下界 | Double | 0.0 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", "10.0, 100"],
["b", "-2.5, 9"],
["c", "100.2, 1"],
["d", "-99.9, 100"],
["a", "1.4, 1"],
["b", "-2.2, 9"],
["c", "100.9, 1"]
])
data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string")
trainOp = VectorMinMaxScalerTrainBatchOp()\
.setSelectedCol("vec")
model = trainOp.linkFrom(data)
batchPredictOp = VectorMinMaxScalerPredictBatchOp()
batchPredictOp.linkFrom(model, data).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorMinMaxScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorMinMaxScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class VectorMinMaxScalerTrainBatchOpTest {
@Test
public void testVectorMinMaxScalerTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", "10.0, 100"),
Row.of("b", "-2.5, 9"),
Row.of("c", "100.2, 1"),
Row.of("d", "-99.9, 100"),
Row.of("a", "1.4, 1"),
Row.of("b", "-2.2, 9"),
Row.of("c", "100.9, 1")
);
BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string");
BatchOperator <?> trainOp = new VectorMinMaxScalerTrainBatchOp()
.setSelectedCol("vec");
BatchOperator <?> model = trainOp.linkFrom(data);
BatchOperator <?> batchPredictOp = new VectorMinMaxScalerPredictBatchOp();
batchPredictOp.linkFrom(model, data).print();
}
}
运行结果
| col | vec | | —- | —- |
| a | 0.5473107569721115 1.0 |
| b | 0.4850597609561753 0.08080808080808081 |
| c | 0.9965139442231076 0.0 |
| d | 0.0 1.0 |
| a | 0.5044820717131474 0.0 |
| b | 0.4865537848605578 0.08080808080808081 |
| c | 1.0 0.0 |