Java 类名:com.alibaba.alink.operator.stream.feature.CrossFeaturePredictStreamOp
Python 类名:CrossFeaturePredictStreamOp
功能介绍
将选定的特征列组合成单个向量类型的特征。
使用方式
该组件是预测组件,需要配合预测组件 CrossFeatureTrainBatchOp 使用。
使用中指定输出列名(outputCol)即可。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["1.0", "1.0", 1.0, 1],
["1.0", "1.0", 0.0, 1],
["1.0", "0.0", 1.0, 1],
["1.0", "0.0", 1.0, 1],
["2.0", "3.0", None, 0],
["2.0", "3.0", 1.0, 0],
["0.0", "1.0", 2.0, 0],
["0.0", "1.0", 1.0, 0]])
batchData = BatchOperator.fromDataframe(df, schemaStr="f0 string, f1 string, f2 double, label bigint")
streamData = StreamOperator.fromDataframe(df, schemaStr="f0 string, f1 string, f2 double, label bigint")
train = CrossFeatureTrainBatchOp().setSelectedCols(['f0','f1','f2']).linkFrom(batchData)
CrossFeaturePredictStreamOp(train).setOutputCol("cross").linkFrom(streamData).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.CrossFeaturePredictBatchOp;
import com.alibaba.alink.operator.batch.feature.CrossFeatureTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class CrossFeaturePredictStreamOpTest {
@Test
public void testCrossFeaturePredictStreamOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("1.0", "1.0", 1.0, 1),
Row.of("1.0", "1.0", 0.0, 1),
Row.of("1.0", "0.0", 1.0, 1),
Row.of("1.0", "0.0", 1.0, 1),
Row.of("2.0", "3.0", null, 0),
Row.of("2.0", "3.0", 1.0, 0),
Row.of("0.0", "1.0", 2.0, 0)
);
BatchOperator <?> batchData = new MemSourceBatchOp(df, "f0 string, f1 string, f2 double, label int");
StreamOperator<?> streamData = new MemSourceStreamOp(df, "f0 string, f1 string, f2 double, label int");
BatchOperator <?> train = new CrossFeatureTrainBatchOp().setSelectedCols("f0", "f1", "f2").linkFrom(batchData);
new CrossFeaturePredictStreamOp(train).setOutputCol("cross").linkFrom(streamData).print();
StreamOperator.execute();
}
}
运行结果
| f0 | f1 | f2 | label | cross | | —- | —- | —- | —- | —- |
| 2.0 | 3.0 | 1.0000 | 0 | $36$7:1.0 |
| 0.0 | 1.0 | 2.0000 | 0 | $36$32:1.0 |
| 1.0 | 1.0 | 0.0000 | 1 | $36$12:1.0 |
| 1.0 | 1.0 | 1.0000 | 1 | $36$3:1.0 |
| 1.0 | 0.0 | 1.0000 | 1 | $36$0:1.0 |
| 1.0 | 0.0 | 1.0000 | 1 | $36$0:1.0 |
| 2.0 | 3.0 | null | 0 | $36$25:1.0 |