Java 类名:com.alibaba.alink.operator.stream.tensorflow.TFTableModelPredictStreamOp
Python 类名:TFTableModelPredictStreamOp
功能介绍
使用 TFTableModelTrainBatchOp
或者 TF2TableModelTrainBatchOp
训练产生的模型进行预测。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| outputSchemaStr | Schema | Schema。格式为”colname coltype[, colname2, coltype2[, …]]”,例如 “f0 string, f1 bigint, f2 double” | String | ✓ | | |
| graphDefTag | graph标签 | graph标签 | String | | | “serve” |
| inputSignatureDefs | 输入 SignatureDef | SavedModel 模型的输入 SignatureDef 名,用逗号分隔,需要与输入列一一对应,默认与选择列相同 | String[] | | | null |
| intraOpParallelism | Op 间并发度 | Op 间并发度 | Integer | | | 4 |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| outputSignatureDefs | TF 输出 SignatureDef 名 | 模型的输出 SignatureDef 名,多个输出时用逗号分隔,并且与输出 Schema 一一对应,默认与输出 Schema 中的列名相同 | String[] | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | | | null |
| signatureDefKey | signature标签 | signature标签 | String | | | “serving_default” |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
import json
source = RandomTableSourceBatchOp() \
.setNumRows(100) \
.setNumCols(10)
streamSource = RandomTableSourceStreamOp() \
.setNumCols(10) \
.setMaxRows(100)
colNames = source.getColNames()
source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label")
label = "label"
userParams = {
'featureCols': json.dumps(colNames),
'labelCol': label,
'batch_size': 16,
'num_epochs': 1
}
tfTableModelTrainBatchOp = TFTableModelTrainBatchOp() \
.setUserFiles(["https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"]) \
.setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py") \
.setUserParams(json.dumps(userParams)) \
.linkFrom(source)
tfTableModelPredictStreamOp = TFTableModelPredictStreamOp(tfTableModelTrainBatchOp) \
.setOutputSchemaStr("logits double") \
.setOutputSignatureDefs(["logits"]) \
.setSignatureDefKey("predict") \
.setSelectedCols(colNames) \
.linkFrom(streamSource)
tfTableModelPredictStreamOp.print()
StreamOperator.execute()
Java 代码
import com.alibaba.alink.common.utils.JsonConverter;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp;
import com.alibaba.alink.operator.batch.tensorflow.TFTableModelTrainBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.source.RandomTableSourceStreamOp;
import com.alibaba.alink.operator.stream.tensorflow.TFTableModelPredictStreamOp;
import org.junit.Test;
import java.util.HashMap;
import java.util.Map;
public class TFTableModelPredictStreamOpTest {
@Test
public void testTFTableModelPredictStreamOp() throws Exception {
BatchOperator <?> source = new RandomTableSourceBatchOp()
.setNumRows(100L)
.setNumCols(10);
String[] colNames = source.getColNames();
source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label");
String label = "label";
StreamOperator<?> streamSource = new RandomTableSourceStreamOp()
.setNumCols(10)
.setMaxRows(100L);
Map <String, Object> userParams = new HashMap <>();
userParams.put("featureCols", JsonConverter.toJson(colNames));
userParams.put("labelCol", label);
userParams.put("batch_size", 16);
userParams.put("num_epochs", 1);
TFTableModelTrainBatchOp tfTableModelTrainBatchOp = new TFTableModelTrainBatchOp()
.setUserFiles(new String[] {"https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"})
.setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py")
.setUserParams(JsonConverter.toJson(userParams))
.linkFrom(source);
TFTableModelPredictStreamOp tfTableModelPredictStreamOp = new TFTableModelPredictStreamOp(tfTableModelTrainBatchOp)
.setOutputSchemaStr("logits double")
.setOutputSignatureDefs(new String[] {"logits"})
.setSignatureDefKey("predict")
.setSelectedCols(colNames)
.linkFrom(streamSource);
tfTableModelPredictStreamOp.print();
StreamOperator.execute();
}
}
运行结果
| num | col0 | col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | logits | | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- |
| 52 | 0.8289 | 0.0595 | 0.8372 | 0.4365 | 0.5137 | 0.3043 | 0.6373 | 0.7164 | 0.3754 | 0.2490 | -0.0958 |
| 34 | 0.0506 | 0.1309 | 0.0579 | 0.4603 | 0.4680 | 0.2531 | 0.7893 | 0.7719 | 0.3453 | 0.7246 | -0.1723 |
| 23 | 0.1034 | 0.4412 | 0.5226 | 0.1031 | 0.5974 | 0.7483 | 0.3918 | 0.8350 | 0.4634 | 0.4486 | -0.0420 |
| 60 | 0.7367 | 0.6767 | 0.8048 | 0.0243 | 0.4491 | 0.0166 | 0.2471 | 0.0429 | 0.1482 | 0.7834 | -0.0458 |
| 35 | 0.5111 | 0.4983 | 0.3353 | 0.3196 | 0.8428 | 0.0538 | 0.8995 | 0.7321 | 0.5583 | 0.2186 | -0.1468 |
| … | … | … | … | … | … | … | … | … | … | … | … |