Java 类名:com.alibaba.alink.operator.batch.feature.PcaTrainBatchOp
Python 类名:PcaTrainBatchOp
功能介绍
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关,作为新的综合指标。详细介绍请见维基百科链接wiki。
主成分分析功能包含主成分分析训练和主成分分析预测(批和流)。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
k | 降维后的维度 | 降维后的维度 | Integer | ✓ | [1, +inf) | |
calculationType | 计算类型 | 计算类型,包含”CORR”, “COV”两种。 | String | “CORR”, “COV” | “CORR” | |
selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null | |
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[0.0,0.0,0.0],
[0.1,0.2,0.1],
[0.2,0.2,0.8],
[9.0,9.5,9.7],
[9.1,9.1,9.6],
[9.2,9.3,9.9]
])
# batch source
inOp = BatchOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double')
trainOp = PcaTrainBatchOp()\
.setK(2)\
.setSelectedCols(["x1","x2","x3"])
predictOp = PcaPredictBatchOp()\
.setPredictionCol("pred")
# batch train
inOp.link(trainOp)
# batch predict
predictOp.linkFrom(trainOp,inOp)
predictOp.print()
# stream predict
inStreamOp = StreamOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double')
predictStreamOp = PcaPredictStreamOp(trainOp)\
.setPredictionCol("pred")
predictStreamOp.linkFrom(inStreamOp)
predictStreamOp.print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.PcaPredictBatchOp;
import com.alibaba.alink.operator.batch.feature.PcaTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.PcaPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class PcaTrainBatchOpTest {
@Test
public void testPcaTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(0.0, 0.0, 0.0),
Row.of(0.1, 0.2, 0.1),
Row.of(0.2, 0.2, 0.8),
Row.of(9.0, 9.5, 9.7),
Row.of(9.1, 9.1, 9.6),
Row.of(9.2, 9.3, 9.9)
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "x1 double, x2 double, x3 double");
BatchOperator <?> trainOp = new PcaTrainBatchOp()
.setK(2)
.setSelectedCols("x1", "x2", "x3");
BatchOperator <?> predictOp = new PcaPredictBatchOp()
.setPredictionCol("pred");
inOp.link(trainOp);
predictOp.linkFrom(trainOp, inOp);
predictOp.print();
StreamOperator <?> inStreamOp = new MemSourceStreamOp(df, "x1 double, x2 double, x3 double");
StreamOperator <?> predictStreamOp = new PcaPredictStreamOp(trainOp)
.setPredictionCol("pred");
predictStreamOp.linkFrom(inStreamOp);
predictStreamOp.print();
StreamOperator.execute();
}
}
运行结果
| x1 | x2 | x3 | pred | | —- | —- | —- | —- |
| 9.0 | 9.5 | 9.7 | 3.2280384305400736,1.1516225426477789E-4 |
| 0.2 | 0.2 | 0.8 | 0.13565076707329407,0.09003329494282108 |
| 9.2 | 9.3 | 9.9 | 3.250783163664603,0.0456526246528135 |
| 9.1 | 9.1 | 9.6 | 3.182618319978973,0.027469531992220464 |
| 0.1 | 0.2 | 0.1 | 0.045855205015063565,-0.012182917696915518 |
| 0.0 | 0.0 | 0.0 | 0.0,0.0 |