Java 类名:com.alibaba.alink.operator.batch.regression.KerasSequentialRegressorPredictBatchOp
Python 类名:KerasSequentialRegressorPredictBatchOp
功能介绍
与 KerasSequential 回归训练组件对应的预测组件。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | 256 | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
source = CsvSourceBatchOp() \
.setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") \
.setSchemaStr("tensor string, label double")
source = ToTensorBatchOp() \
.setSelectedCol("tensor") \
.setTensorDataType("DOUBLE") \
.setTensorShape([200, 3]) \
.linkFrom(source)
trainBatchOp = KerasSequentialRegressorTrainBatchOp() \
.setTensorCol("tensor") \
.setLabelCol("label") \
.setLayers([
"Conv1D(256, 5, padding='same', activation='relu')",
"Conv1D(128, 5, padding='same', activation='relu')",
"Dropout(0.1)",
"MaxPooling1D(pool_size=8)",
"Conv1D(128, 5, padding='same', activation='relu')",
"Conv1D(128, 5, padding='same', activation='relu')",
"Flatten()"
]) \
.setOptimizer("Adam()") \
.setNumEpochs(1) \
.linkFrom(source)
predictBatchOp = KerasSequentialRegressorPredictBatchOp() \
.setPredictionCol("pred") \
.setReservedCols(["label"]) \
.linkFrom(trainBatchOp, source)
predictBatchOp.lazyPrint(10)
BatchOperator.execute()
Java 代码
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.ToTensorBatchOp;
import com.alibaba.alink.operator.batch.regression.KerasSequentialRegressorPredictBatchOp;
import com.alibaba.alink.operator.batch.regression.KerasSequentialRegressorTrainBatchOp;
import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp;
import org.junit.Test;
public class KerasSequentialRegressorTrainBatchOpTest {
@Test
public void testKerasSequentialRegressorTrainBatchOp() throws Exception {
BatchOperator<?> source = new CsvSourceBatchOp()
.setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv")
.setSchemaStr("tensor string, label double");
source = new ToTensorBatchOp()
.setSelectedCol("tensor")
.setTensorDataType("DOUBLE")
.setTensorShape(200, 3)
.linkFrom(source);
KerasSequentialRegressorTrainBatchOp trainBatchOp = new KerasSequentialRegressorTrainBatchOp()
.setTensorCol("tensor")
.setLabelCol("label")
.setLayers(new String[] {
"Conv1D(256, 5, padding='same', activation='relu')",
"Conv1D(128, 5, padding='same', activation='relu')",
"Dropout(0.1)",
"MaxPooling1D(pool_size=8)",
"Conv1D(128, 5, padding='same', activation='relu')",
"Conv1D(128, 5, padding='same', activation='relu')",
"Flatten()"
})
.setOptimizer("Adam()")
.setNumEpochs(1)
.linkFrom(source);
KerasSequentialRegressorPredictBatchOp predictBatchOp = new KerasSequentialRegressorPredictBatchOp()
.setPredictionCol("pred")
.setReservedCols("label")
.linkFrom(trainBatchOp, source);
predictBatchOp.lazyPrint(10);
BatchOperator.execute();
}
}
运行结果
label | pred |
---|---|
1.0000 | 0.4822 |
0.0000 | 0.4826 |
0.0000 | 0.4752 |
0.0000 | 0.4702 |
1.0000 | 0.4907 |
1.0000 | 0.4992 |
0.0000 | 0.4866 |
1.0000 | 0.5045 |
0.0000 | 0.4994 |
1.0000 | 0.4837 |