Java 类名:com.alibaba.alink.operator.batch.dataproc.HugeMultiIndexerStringPredictBatchOp
Python 类名:HugeMultiIndexerStringPredictBatchOp
功能介绍
提供ID转换为字符串的功能,与 HugeMultiStringIndexerPredictBatchOp 功能相反。
由 MultiStringIndexerTrainBatchOp 生成词典模型,将输入数据的ID转化成原文。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [LONG] | |
handleInvalid | 未知token处理策略 | 未知token处理策略。”keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[1, "football", "apple"],
[2, "football", "apple"],
[3, "football", "apple"],
[4, "basketball", "apple"],
[5, "basketball", "apple"],
[6, "tennis", "pair"],
[7, "tennis", "pair"],
[8, "pingpang", "banana"],
[9, "pingpang", "banana"],
[0, "baseball", "banana"]
])
data = BatchOperator.fromDataframe(df, schemaStr='id long, f0 string, f1 string')
stringindexer = MultiStringIndexerTrainBatchOp()\
.setSelectedCols(["f0", "f1"])\
.setStringOrderType("frequency_asc")
model = stringindexer.linkFrom(data)
predictor = HugeMultiStringIndexerPredictBatchOp()\
.setSelectedCols(["f0", "f1"])
result = predictor.linkFrom(model, data)
stringPredictor = HugeMultiIndexerStringPredictBatchOp()\
.setSelectedCols(["f0", "f1"])\
.setOutputCols(["f0_source", "f1_source"])
stringPredictor.linkFrom(model, result).print();
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class HugeMultiIndexerStringPredictBatchOpTest {
@Test
public void testHugeMultiStringIndexerPredict() throws Exception {
List <Row> df = Arrays.asList(
Row.of(1L, "football", "apple"),
Row.of(2L, "football", "apple"),
Row.of(3L, "football", "apple"),
Row.of(4L, "basketball", "apple"),
Row.of(5L, "basketball", "apple"),
Row.of(6L, "tennis", "pair"),
Row.of(7L, "tennis", "pair"),
Row.of(8L, "pingpang", "banana"),
Row.of(9L, "pingpang", "banana"),
Row.of(0L, "baseball", "banana")
);
// baseball 1
// basketball,pair,tennis,pingpang 2
// footbal,banana 3
// apple 5
BatchOperator <?> data = new MemSourceBatchOp(df, "id long,f0 string,f1 string");
BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp()
.setSelectedCols("f0", "f1")
.setStringOrderType("frequency_asc");
BatchOperator model = stringindexer.linkFrom(data);
model.lazyPrint(10);
BatchOperator <?> predictor = new HugeMultiStringIndexerPredictBatchOp().setSelectedCols("f0", "f1");
BatchOperator result = predictor.linkFrom(model, data);
result.lazyPrint(10);
BatchOperator <?> stringPredictor = new HugeMultiIndexerStringPredictBatchOp().setSelectedCols("f0", "f1")
.setOutputCols("f0_source", "f1_source");
stringPredictor.linkFrom(model, result).print();
}
}
运行结果
| column_index | token | token_index | | —- | —- | —- |
| 1 | apple | 2 |
| 1 | pair | 0 |
| 1 | banana | 1 |
| -1 | {“selectedCols”:”[“f0”,”f1”]”,”selectedColTypes”:”[“VARCHAR”,”VARCHAR”]”} | null |
| 0 | football | 4 |
| 0 | baseball | 0 |
| 0 | basketball | 1 |
| 0 | tennis | 2 |
| 0 | pingpang | 3 |
| id | f0 | f1 | | —- | —- | —- |
| 1 | 4 | 2 |
| 2 | 4 | 2 |
| 6 | 2 | 0 |
| 7 | 2 | 0 |
| 5 | 1 | 2 |
| 3 | 4 | 2 |
| 9 | 3 | 1 |
| 0 | 0 | 1 |
| 4 | 1 | 2 |
| 8 | 3 | 1 |
| id | f0 | f1 | f0_source | f1_source | | —- | —- | —- | —- | —- |
| 5 | 1 | 2 | basketball | apple |
| 2 | 4 | 2 | football | apple |
| 6 | 2 | 0 | tennis | pair |
| 4 | 1 | 2 | basketball | apple |
| 8 | 3 | 1 | pingpang | banana |
| 3 | 4 | 2 | football | apple |
| 7 | 2 | 0 | tennis | pair |
| 9 | 3 | 1 | pingpang | banana |
| 0 | 0 | 1 | baseball | banana |
| 1 | 4 | 2 | football | apple |