Java 类名:com.alibaba.alink.operator.stream.dataproc.vector.VectorStandardScalerPredictStreamOp
Python 类名:VectorStandardScalerPredictStreamOp
功能介绍
标准化是对向量数据进行按正态化处理的组件
加载VectorStandardScalerTrainBatchOp中生成的模型,对向量数据做标准化预处理。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", "10.0, 100"],
["b", "-2.5, 9"],
["c", "100.2, 1"],
["d", "-99.9, 100"],
["a", "1.4, 1"],
["b", "-2.2, 9"],
["c", "100.9, 1"]
])
data = BatchOperator.fromDataframe(df, schemaStr="col1 string, vec string")
colnames = ["col1", "vec"]
selectedColName = "vec"
trainOp = VectorStandardScalerTrainBatchOp()\
.setSelectedCol(selectedColName)
model = trainOp.linkFrom(data)
#batch predict
batchPredictOp = VectorStandardScalerPredictBatchOp()
batchPredictOp.linkFrom(model, data).print()
#stream predict
streamData = StreamOperator.fromDataframe(df, schemaStr="col1 string, vec string")
streamPredictOp = VectorStandardScalerPredictStreamOp(trainOp)
streamData.link(streamPredictOp).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.dataproc.vector.VectorStandardScalerPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class VectorStandardScalerPredictStreamOpTest {
@Test
public void testVectorStandardScalerPredictStreamOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", "10.0, 100"),
Row.of("b", "-2.5, 9"),
Row.of("c", "100.2, 1"),
Row.of("d", "-99.9, 100"),
Row.of("a", "1.4, 1"),
Row.of("b", "-2.2, 9"),
Row.of("c", "100.9, 1")
);
BatchOperator <?> data = new MemSourceBatchOp(df, "col1 string, vec string");
BatchOperator <?> trainOp = new VectorStandardScalerTrainBatchOp()
.setSelectedCol("vec");
BatchOperator <?> model = trainOp.linkFrom(data);
BatchOperator <?> batchPredictOp = new VectorStandardScalerPredictBatchOp();
batchPredictOp.linkFrom(model, data).print();
StreamOperator <?> streamData = new MemSourceStreamOp(df, "col1 string, vec string");
StreamOperator <?> streamPredictOp = new VectorStandardScalerPredictStreamOp(trainOp);
streamData.link(streamPredictOp).print();
StreamOperator.execute();
}
}
运行结果
| col1 | vec | | —- | —- |
| a | -0.07835182408093559,1.4595814453461897 |
| c | 1.2269606224811418,-0.6520885789229323 |
| b | -0.2549018445693762,-0.4814485769617911 |
| a | -0.20280511721213143,-0.6520885789229323 |
| c | 1.237090541689495,-0.6520885789229323 |
| b | -0.25924323851581327,-0.4814485769617911 |
| d | -1.6687491397923802,1.4595814453461897 |