Java 类名:com.alibaba.alink.pipeline.tensorflow.TF2TableModelTrainer
Python 类名:TF2TableModelTrainer

功能介绍

该组件支持用户传入 TensorFlow2 脚本,进行模型训练。
用户需要提供自己编写的 TensorFlow2 脚本文件。
脚本的编写需要依赖 akdl 库,可以参考 alink_dl_predictors/predictor-tf/src/test/resources/tf_dnn_train.py
脚本中必须要将模型保存为 SavedModel 格式,并导出到指定的目录下 (TrainTaskConfig#saved_model_dir)。
调用这个组件的 fit 方法可以得到一个 TFTableModelPredictor 进行预测。
需要注意的是:参与预测的列名一般与参与训练的列名不同(预测没有 label 列),需要通过参数 inferSelectedCols 来指定参与预测的列名。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
mainScriptFile 主脚本文件路径 主脚本文件路径,需要是参数 userFiles 中的一项,并且包含 main 函数 String
outputSchemaStr Schema Schema。格式为”colname coltype[, colname2, coltype2[, …]]”,例如 “f0 string, f1 bigint, f2 double” String
userFiles 所有自定义脚本文件的路径 所有自定义脚本文件的路径 String
graphDefTag graph标签 graph标签 String “serve”
inferSelectedCols 用于推理的列名数组 用于推理的列名列表 String[] null
inputSignatureDefs 输入 SignatureDef SavedModel 模型的输入 SignatureDef 名,用逗号分隔,需要与输入列一一对应,默认与选择列相同 String[] null
intraOpParallelism Op 间并发度 Op 间并发度 Integer 4
modelFilePath 模型的文件路径 模型的文件路径 String null
numPSs PS 角色数 PS 角色的数量。值未设置时,如果 Worker 角色数也未设置,则为作业总并发度的 1/4(需要取整),否则为总并发度减去 Worker 角色数。 Integer null
numWorkers Worker 角色数 Worker 角色的数量。值未设置时,如果 PS 角色数也未设置,则为作业总并发度的 3/4(需要取整),否则为总并发度减去 PS 角色数。 Integer null
outputSignatureDefs TF 输出 SignatureDef 名 模型的输出 SignatureDef 名,多个输出时用逗号分隔,并且与输出 Schema 一一对应,默认与输出 Schema 中的列名相同 String[] null
overwriteSink 是否覆写已有数据 是否覆写已有数据 Boolean false
pythonEnv Python 环境路径 Python 环境路径,一般情况下不需要填写。如果是压缩文件,需要解压后得到一个目录,且目录名与压缩文件主文件名一致,可以使用 http://, https://, oss://, hdfs:// 等路径;如果是目录,那么只能使用本地路径,即 file://。 String “”
reservedCols 算法保留列名 算法保留列 String[] null
selectedCols 选中的列名数组 计算列对应的列名列表 String[] null
signatureDefKey signature标签 signature标签 String “serving_default”
userParams 自定义参数 用户自定义参数,JSON 字典格式的字符串 String “{}”
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

脚本路径说明

脚本路径可以是以下形式:

  • 本地文件:file:// 加绝对路径,例如 file:///tmp/dnn.py
  • Java 包中的资源文件:res:// 加路径,例如 res:///dnn.py
  • http/https 文件:http://https:// 路径;
  • OSS 文件:oss:// 加路径和 Endpoint 和 access key 等信息,例如oss://bucket/xxx/xxx/xxx.py?host=xxx&access_key_id=xxx&access_key_secret=xxx
  • HDFS 文件:hdfs:// 加路径;

    代码示例

    以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!

    Python 代码

    ``` import json

source = RandomTableSourceBatchOp() \ .setNumRows(100) \ .setNumCols(10)

colNames = source.getColNames() source = source.select(“*, case when RAND() > 0.5 then 1. else 0. end as label”) label = “label”

userParams = { ‘featureCols’: json.dumps(colNames), ‘labelCol’: label, ‘batch_size’: 16, ‘num_epochs’: 1 }

trainer = TF2TableModelTrainer() \ .setUserFiles([“https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py“]) \ .setMainScriptFile(“https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py“) \ .setUserParams(json.dumps(userParams)) \ .setOutputSchemaStr(“logits double”) \ .setOutputSignatureDefs([“logits”]) \ .setSignatureDefKey(“predict”) \ .setInferSelectedCols(colNames) model = trainer.fit(source) model.transform(source).print()

  1. ### Java 代码

import com.alibaba.alink.common.utils.JsonConverter; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp; import com.alibaba.alink.pipeline.tensorflow.TF2TableModelTrainer; import com.alibaba.alink.pipeline.tensorflow.TFTableModelPredictor; import org.junit.Test;

import java.util.HashMap; import java.util.Map;

public class TF2TableModelTrainerTest {

  1. @Test
  2. public void testTF2TableModelTrainer() throws Exception {
  3. BatchOperator.setParallelism(3);
  4. BatchOperator<?> source = new RandomTableSourceBatchOp()
  5. .setNumRows(100L)
  6. .setNumCols(10);
  7. String[] colNames = source.getColNames();
  8. source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label");
  9. String label = "label";
  10. Map <String, Object> userParams = new HashMap <>();
  11. userParams.put("featureCols", JsonConverter.toJson(colNames));
  12. userParams.put("labelCol", label);
  13. userParams.put("batch_size", 16);
  14. userParams.put("num_epochs", 1);
  15. TF2TableModelTrainer trainer = new TF2TableModelTrainer()
  16. .setUserFiles(new String[] {"res:///tf_dnn_train.py"})
  17. .setMainScriptFile("res:///tf_dnn_train.py")
  18. .setUserParams(JsonConverter.toJson(userParams))
  19. .setNumWorkers(2)
  20. .setNumPSs(1)
  21. .setOutputSchemaStr("logits double")
  22. .setOutputSignatureDefs(new String[]{"logits"})
  23. .setSignatureDefKey("predict")
  24. .setInferSelectedCols(colNames);
  25. TFTableModelPredictor model = trainer.fit(source);
  26. model.transform(source).print();
  27. }

}

```