Java 类名:com.alibaba.alink.operator.batch.evaluation.EvalMultiClassBatchOp
Python 类名:EvalMultiClassBatchOp

功能介绍

多分类评估是对多分类算法的预测结果进行效果评估。
支持Roc曲线,LiftChart曲线,K-S曲线,Recall-Precision曲线绘制。
流式的实验支持累计统计和窗口统计,除却上述四条曲线外,还给出Auc/Kappa/Accuracy/Logloss随时间的变化曲线。
给出整体的评估指标包括:AUC、K-S、PRC, 不同阈值下的Precision、Recall、F-Measure、Sensitivity、Accuracy、Specificity和Kappa。

混淆矩阵

多分类评估 (EvalMultiClassBatchOp) - 图1#### Precision

Recall

F-Measure

Sensitivity

Accuracy

Specificity

Kappa

Logloss

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | | |

| predictionCol | 预测结果列名 | 预测结果列名 | String | | | |

| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | 所选列类型为 [STRING] | |

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df = pd.DataFrame([
  5. ["prefix1", "{\"prefix1\": 0.9, \"prefix0\": 0.1}"],
  6. ["prefix1", "{\"prefix1\": 0.8, \"prefix0\": 0.2}"],
  7. ["prefix1", "{\"prefix1\": 0.7, \"prefix0\": 0.3}"],
  8. ["prefix0", "{\"prefix1\": 0.75, \"prefix0\": 0.25}"],
  9. ["prefix0", "{\"prefix1\": 0.6, \"prefix0\": 0.4}"]])
  10. inOp = BatchOperator.fromDataframe(df, schemaStr='label string, detailInput string')
  11. metrics = EvalMultiClassBatchOp().setLabelCol("label").setPredictionDetailCol("detailInput").linkFrom(inOp).collectMetrics()
  12. print("Prefix0 accuracy:", metrics.getAccuracy("prefix0"))
  13. print("Prefix1 recall:", metrics.getRecall("prefix1"))
  14. print("Macro Precision:", metrics.getMacroPrecision())
  15. print("Micro Recall:", metrics.getMicroRecall())
  16. print("Weighted Sensitivity:", metrics.getWeightedSensitivity())

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.evaluation.EvalMultiClassBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import com.alibaba.alink.operator.common.evaluation.MultiClassMetrics;
  6. import org.junit.Test;
  7. import java.util.Arrays;
  8. import java.util.List;
  9. public class EvalMultiClassBatchOpTest {
  10. @Test
  11. public void testEvalMultiClassBatchOp() throws Exception {
  12. List <Row> df = Arrays.asList(
  13. Row.of("prefix1", "{\"prefix1\": 0.9, \"prefix0\": 0.1}"),
  14. Row.of("prefix1", "{\"prefix1\": 0.8, \"prefix0\": 0.2}"),
  15. Row.of("prefix1", "{\"prefix1\": 0.7, \"prefix0\": 0.3}"),
  16. Row.of("prefix0", "{\"prefix1\": 0.75, \"prefix0\": 0.25}")
  17. );
  18. BatchOperator <?> inOp = new MemSourceBatchOp(df, "label string, detailInput string");
  19. MultiClassMetrics metrics = new EvalMultiClassBatchOp().setLabelCol("label").setPredictionDetailCol(
  20. "detailInput").linkFrom(inOp).collectMetrics();
  21. System.out.println("Prefix0 accuracy:" + metrics.getAccuracy("prefix0"));
  22. System.out.println("Prefix1 recall:" + metrics.getRecall("prefix1"));
  23. System.out.println("Macro Precision:" + metrics.getMacroPrecision());
  24. System.out.println("Micro Recall:" + metrics.getMicroRecall());
  25. System.out.println("Weighted Sensitivity:" + metrics.getWeightedSensitivity());
  26. }
  27. }

运行结果

  1. Prefix0 accuracy: 0.6
  2. Prefix1 recall: 1.0
  3. Macro Precision: 0.8
  4. Micro Recall: 0.6
  5. Weighted Sensitivity: 0.6