Java 类名:com.alibaba.alink.operator.batch.statistics.ChiSquareTestBatchOp
Python 类名:ChiSquareTestBatchOp
功能介绍
卡法独立性检验是检验两个因素(各有两项或以上的分类)之间是否相互影响的问题,其零假设是两因素之间相互独立。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | | |
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | | |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
['a1','b1','c1'],
['a1','b2','c1'],
['a1','b1','c2'],
['a2','b1','c1'],
['a2','b2','c2'],
['a2', 'b1','c1']
])
batchData = BatchOperator.fromDataframe(df, schemaStr='x1 string, x2 string, x3 string')
chisqTest = ChiSquareTestBatchOp()\
.setSelectedCols(["x1","x2"])\
.setLabelCol("x3")
batchData.link(chisqTest).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.batch.statistics.ChiSquareTestBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class ChiSquareTestBatchOpTest {
@Test
public void testChiSquareTestBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a1", "b1", "c1"),
Row.of("a1", "b2", "c1"),
Row.of("a1", "b1", "c2"),
Row.of("a2", "b1", "c1"),
Row.of("a2", "b2", "c2"),
Row.of("a2", "b1", "c1")
);
BatchOperator <?> batchData = new MemSourceBatchOp(df, "x1 string, x2 string, x3 string");
BatchOperator <?> chisqTest = new ChiSquareTestBatchOp()
.setSelectedCols("x1", "x2")
.setLabelCol("x3");
batchData.link(chisqTest).print();
}
}
运行结果
| col | chi2_result | | —- | —- |
| x1 | {“comment”:”pearson test”,”df”:1.0,”p”:1.0,”value”:0.0} |
| x2 | {“comment”:”pearson test”,”df”:1.0,”p”:0.5402913746074196,”value”:0.37500000000000006} |