Java 类名:com.alibaba.alink.operator.batch.graph.Node2VecWalkBatchOp
Python 类名:Node2VecWalkBatchOp
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| sourceCol | 起始点列名 | 用来指定起始点列 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
| targetCol | 中止点点列名 | 用来指定中止点列 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
| walkLength | 游走的长度 | 随机游走完向量的长度 | Integer | ✓ | | |
| walkNum | 路径数目 | 每一个起始点游走出多少条路径 | Integer | ✓ | | |
| delimiter | 分隔符 | 用来分割字符串 | String | | | “ “ |
| isToUndigraph | 是否转无向图 | 选为true时,会将当前图转成无向图,然后再游走 | Boolean | | | false |
| p | 算法参数P | 控制随机游走序列的跳转概率 | Double | | | 1.0 |
| q | 算法参数Q | 控制随机游走序列的跳转概率 | Double | | | 1.0 |
| samplingMethod | 起始点列名 | 用来指定起始点列 | String | | | “ALIAS” |
| weightCol | 权重列名 | 权重列对应的列名 | String | | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[1, 1, 1.0],
[1, 2, 1.0],
[2, 3, 1.0],
[3, 4, 1.0],
[4, 2, 1.0],
[3, 1, 1.0],
[2, 4, 1.0],
[4, 1, 1.0]])
source = BatchOperator.fromDataframe(df, schemaStr="start int, dest int, weight double")
n2vWalkBatchOp = Node2VecWalkBatchOp() \
.setWalkNum(4) \
.setWalkLength(50) \
.setDelimiter(",") \
.setSourceCol("start") \
.setTargetCol("dest") \
.setIsToUndigraph(True) \
.setWeightCol("weight")
n2vWalkBatchOp.linkFrom(source).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.graph.Node2VecWalkBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class Node2VecWalkBatchOpTest {
@Test
public void testNode2VecWalkBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(1, 1, 1.0),
Row.of(1, 2, 1.0),
Row.of(2, 3, 1.0),
Row.of(3, 4, 1.0),
Row.of(4, 2, 1.0),
Row.of(3, 1, 1.0),
Row.of(2, 4, 1.0)
);
BatchOperator <?> source = new MemSourceBatchOp(df, "start int, dest int, weight double");
BatchOperator <?> n2vWalkBatchOp = new Node2VecWalkBatchOp()
.setWalkNum(4)
.setWalkLength(50)
.setDelimiter(",")
.setSourceCol("start")
.setTargetCol("dest")
.setIsToUndigraph(true)
.setWeightCol("weight");
n2vWalkBatchOp.linkFrom(source).print();
}
}
运行结果
| path | | —- |
| 3,2,1,1,4,2,3,4,2,1,3,1,1,1,3,1,3,4,1,2,4,3,2,1,1,3,2,4,3,4,1,4,2,1,2,1,4,3,1,2,1,3,4,2,4,3,2,3,4,1 |
| 2,3,2,4,2,1,2,3,2,3,2,4,3,1,2,3,4,2,4,2,3,2,3,2,4,2,1,3,1,4,1,1,4,2,1,2,4,1,3,1,1,3,4,2,4,2,3,4,2,4 |
| 4,2,1,4,1,1,1,2,3,4,2,3,2,3,2,4,1,2,3,2,1,2,4,3,1,1,2,4,3,4,2,4,1,2,4,3,1,4,2,4,2,1,3,4,2,1,2,4,3,4 |
| 4,3,1,1,1,3,4,3,4,1,2,4,2,3,2,1,1,1,2,3,4,1,2,4,3,4,3,1,4,2,3,2,4,1,1,1,3,1,3,2,4,2,4,3,1,1,1,3,2,1 |
| 4,3,1,1,3,2,3,1,4,1,2,1,3,4,3,4,2,1,2,4,2,3,4,2,4,2,4,2,3,1,4,3,2,4,1,2,3,2,1,1,3,1,1,4,1,4,1,4,1,2 |
| 1,3,4,1,2,3,1,3,4,2,1,4,3,2,1,3,1,4,1,4,3,1,4,2,1,2,3,4,3,4,2,3,4,3,4,1,1,1,1,2,4,1,2,4,1,2,4,2,3,1 |
| 3,4,1,4,1,2,1,3,2,4,2,1,2,3,1,4,1,2,4,2,4,3,4,3,2,3,2,1,2,1,1,1,4,2,3,4,1,1,4,2,3,4,3,1,4,3,4,1,4,3 |
| 2,3,1,3,4,1,1,1,4,3,4,1,2,3,2,1,1,3,4,3,2,3,1,3,4,3,2,1,4,3,1,1,2,4,2,1,3,1,3,1,2,3,1,4,3,2,1,2,1,1 |
| 1,2,1,3,1,4,2,3,2,1,3,4,2,4,3,4,2,4,2,1,4,3,2,3,4,1,4,2,1,4,1,3,4,2,1,4,1,4,3,1,3,2,4,1,1,4,1,1,2,3 |
| 1,2,4,2,1,2,4,3,4,3,4,3,1,2,1,2,3,2,3,4,2,4,3,2,3,2,3,1,1,1,4,2,1,4,1,2,1,2,1,1,2,4,2,1,4,2,3,1,1,4 |
| 3,4,1,1,1,2,4,2,4,1,1,1,2,3,2,4,2,1,2,3,4,1,1,3,4,1,2,4,3,2,1,1,4,1,2,1,2,4,2,4,1,3,4,2,1,3,4,3,2,1 |
| 3,2,3,4,3,1,2,4,2,4,1,2,3,4,3,1,2,4,3,2,3,2,3,2,3,4,3,2,4,3,4,2,4,3,1,1,4,1,4,1,3,1,2,3,4,1,4,3,4,2 |
| 1,4,2,4,1,4,1,2,1,1,2,3,1,4,3,4,1,3,1,3,4,2,4,3,2,3,2,3,4,1,3,2,3,4,2,3,4,1,2,4,2,3,4,3,2,3,1,4,2,3 |
| 2,4,3,1,1,3,1,2,4,2,4,3,2,1,2,4,3,2,3,1,1,3,2,1,3,1,4,1,3,1,1,1,1,2,1,3,1,1,3,4,2,1,2,1,1,2,4,3,1,2 |
| 4,2,1,4,3,2,1,1,3,1,4,1,3,2,4,2,4,2,4,3,4,1,3,4,2,3,2,1,3,1,1,1,4,2,1,2,4,1,4,2,1,4,1,2,4,2,1,4,1,2 |
| 2,4,1,4,3,2,1,3,1,3,1,4,1,2,4,1,3,4,2,1,1,3,1,3,1,1,1,1,1,2,4,1,4,3,1,2,1,2,4,1,3,4,1,2,3,1,4,2,4,3 |