Java 类名:com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp
Python 类名:MinMaxScalerPredictBatchOp
功能介绍
数据归一化预测组件
将数据归一到minValue和maxValue之间,value最终结果为 (value - min) / (max - min) * (maxValue - minValue) + minValue,最终结果的范围为[minValue, maxValue]。
minValue和maxValue由用户指定,默认为0和1。
需要加载由MinMaxScalerTrainBatchOp训练的模型
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 10.0, 100],
["b", -2.5, 9],
["c", 100.2, 1],
["d", -99.9, 100],
["a", 1.4, 1],
["b", -2.2, 9],
["c", 100.9, 1]
])
colnames = ["col1", "col2", "col3"]
selectedColNames = ["col2", "col3"]
inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')
# train
trainOp = MinMaxScalerTrainBatchOp()\
.setSelectedCols(selectedColNames)
trainOp.linkFrom(inOp)
# batch predict
predictOp = MinMaxScalerPredictBatchOp()
predictOp.linkFrom(trainOp, inOp).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class MinMaxScalerPredictBatchOpTest {
@Test
public void testMinMaxScalerPredictBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 10.0, 100),
Row.of("b", -2.5, 9),
Row.of("c", 100.2, 1),
Row.of("d", -99.9, 100),
Row.of("a", 1.4, 1),
Row.of("b", -2.2, 9),
Row.of("c", 100.9, 1)
);
String[] selectedColNames = new String[] {"col2", "col3"};
BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int");
BatchOperator <?> trainOp = new MinMaxScalerTrainBatchOp()
.setSelectedCols(selectedColNames);
trainOp.linkFrom(inOp);
BatchOperator <?> predictOp = new MinMaxScalerPredictBatchOp();
predictOp.linkFrom(trainOp, inOp).print();
}
}
运行结果
| col1 | col2 | col3 | | —- | —- | —- |
| a | 0.5473 | 1.0000 |
| b | 0.4851 | 0.0808 |
| c | 0.9965 | 0.0000 |
| d | 0.0000 | 1.0000 |
| a | 0.5045 | 0.0000 |
| b | 0.4866 | 0.0808 |
| c | 1.0000 | 0.0000 |