Java 类名:com.alibaba.alink.pipeline.regression.LinearRegression
Python 类名:LinearRegression

功能介绍

线性回归算法是经典的回归算法,通过对带有回归值的样本集合训练得到回归模型,使用模型预测样本的回归值。线性回归组件支持稀疏、稠密两种数据格式,并且支持带权重样本训练。

算法原理

面对回归类问题,线性回归利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。

算法使用

线性回归模型经常被用来做一些数值型变量的预测,类似房价预测、销售量预测、贷款额度预测、温度预测、适度预测等。

  • 备注 :该组件训练的时候 FeatureCols 和 VectorCol 是两个互斥参数,只能有一个参数来描述算法的输入特征。

    文献或出处

    [1] Seber, George AF, and Alan J. Lee. Linear regression analysis. John Wiley & Sons, 2012.
    [2] https://baike.baidu.com/item/线性回归/8190345?fr=aladdin

    参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
labelCol 标签列名 输入表中的标签列名 String
predictionCol 预测结果列名 预测结果列名 String
epsilon 收敛阈值 迭代方法的终止判断阈值,默认值为 1.0e-6 Double [0.0, +inf) 1.0E-6
featureCols 特征列名数组 特征列名数组,默认全选 String[] null
l1 L1 正则化系数 L1 正则化系数,默认为0。 Double [0.0, +inf) 0.0
l2 正则化系数 L2 正则化系数,默认为0。 Double [0.0, +inf) 0.0
maxIter 最大迭代步数 最大迭代步数,默认为 100 Integer [1, +inf) 100
modelFilePath 模型的文件路径 模型的文件路径 String null
optimMethod 优化方法 优化问题求解时选择的优化方法 String “LBFGS”, “GD”, “Newton”, “SGD”, “OWLQN” null
overwriteSink 是否覆写已有数据 是否覆写已有数据 Boolean false
reservedCols 算法保留列名 算法保留列 String[] null
standardization 是否正则化 是否对训练数据做正则化,默认true Boolean true
vectorCol 向量列名 向量列对应的列名,默认值是null String null
weightCol 权重列名 权重列对应的列名 String 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] null
withIntercept 是否有常数项 是否有常数项,默认true Boolean true
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df = pd.DataFrame([
  5. [2, 1, 1],
  6. [3, 2, 1],
  7. [4, 3, 2],
  8. [2, 4, 1],
  9. [2, 2, 1],
  10. [4, 3, 2],
  11. [1, 2, 1],
  12. [5, 3, 3]])
  13. batchData = BatchOperator.fromDataframe(df, schemaStr='f0 int, f1 int, label int')
  14. colnames = ["f0","f1"]
  15. lr = LinearRegression()\
  16. .setFeatureCols(colnames)\
  17. .setLabelCol("label")\
  18. .setPredictionCol("pred")
  19. model = lr.fit(batchData)
  20. model.transform(batchData).print()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  4. import com.alibaba.alink.pipeline.regression.LinearRegression;
  5. import com.alibaba.alink.pipeline.regression.LinearRegressionModel;
  6. import org.junit.Test;
  7. import java.util.Arrays;
  8. import java.util.List;
  9. public class LinearRegressionTest {
  10. @Test
  11. public void testLinearRegression() throws Exception {
  12. List <Row> df = Arrays.asList(
  13. Row.of(2, 1, 1),
  14. Row.of(3, 2, 1),
  15. Row.of(4, 3, 2),
  16. Row.of(2, 4, 1),
  17. Row.of(2, 2, 1),
  18. Row.of(4, 3, 2),
  19. Row.of(1, 2, 1)
  20. );
  21. BatchOperator <?> batchData = new MemSourceBatchOp(df, "f0 int, f1 int, label int");
  22. String[] colnames = new String[] {"f0", "f1"};
  23. LinearRegression lr = new LinearRegression()
  24. .setFeatureCols(colnames)
  25. .setLabelCol("label")
  26. .setPredictionCol("pred");
  27. LinearRegressionModel model = lr.fit(batchData);
  28. model.transform(batchData).print();
  29. }
  30. }

运行结果

| f0 | f1 | label | pred | | —- | —- | —- | —- |

| 2 | 1 | 1 | 1.0000 |

| 3 | 2 | 1 | 1.4118 |

| 4 | 3 | 2 | 1.8235 |

| 2 | 4 | 1 | 1.1765 |

| 2 | 2 | 1 | 1.0588 |

| 4 | 3 | 2 | 1.8235 |

| 1 | 2 | 1 | 0.7059 |