Java 类名:com.alibaba.alink.operator.batch.timeseries.DeepARPredictBatchOp
Python 类名:DeepARPredictBatchOp
功能介绍
使用 DeepAR 进行时间序列训练和预测。
使用方式
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| valueCol | value列,类型为MTable | value列,类型为MTable | String | ✓ | 所选列类型为 [M_TABLE] | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictNum | 预测条数 | 预测条数 | Integer | | | 1 |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
import time, datetime
import numpy as np
import pandas as pd
data = pd.DataFrame([
[0, datetime.datetime.fromisoformat('2021-11-01 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-02 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-03 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-04 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-05 00:00:00'), 100.0]
])
source = dataframeToOperator(data, schemaStr='id int, ts timestamp, series double', op_type='batch')
deepARTrainBatchOp = DeepARTrainBatchOp()\
.setTimeCol("ts")\
.setSelectedCol("series")\
.setNumEpochs(10)\
.setWindow(2)\
.setStride(1)
groupByBatchOp = GroupByBatchOp()\
.setGroupByPredicate("id")\
.setSelectClause("mtable_agg(ts, series) as mtable_agg_series")
deepARPredictBatchOp = DeepARPredictBatchOp()\
.setPredictNum(2)\
.setPredictionCol("pred")\
.setValueCol("mtable_agg_series")
deepARPredictBatchOp\
.linkFrom(
deepARTrainBatchOp.linkFrom(source),
groupByBatchOp.linkFrom(source)
)\
.print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.batch.sql.GroupByBatchOp;
import com.alibaba.alink.operator.batch.timeseries.DeepARPredictBatchOp;
import com.alibaba.alink.operator.batch.timeseries.DeepARTrainBatchOp;
import org.junit.Test;
import java.sql.Timestamp;
import java.util.Arrays;
import java.util.List;
public class DeepARTrainBatchOpTest {
@Test
public void testDeepARTrainBatchOp() throws Exception {
BatchOperator.setParallelism(1);
List <Row> data = Arrays.asList(
Row.of(0, Timestamp.valueOf("2021-11-01 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-02 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-03 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-04 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-05 00:00:00"), 100.0)
);
MemSourceBatchOp memSourceBatchOp = new MemSourceBatchOp(data, "id int, ts timestamp, series double");
DeepARTrainBatchOp deepARTrainBatchOp = new DeepARTrainBatchOp()
.setTimeCol("ts")
.setSelectedCol("series")
.setNumEpochs(10)
.setWindow(2)
.setStride(1);
GroupByBatchOp groupByBatchOp = new GroupByBatchOp()
.setGroupByPredicate("id")
.setSelectClause("mtable_agg(ts, series) as mtable_agg_series");
DeepARPredictBatchOp deepARPredictBatchOp = new DeepARPredictBatchOp()
.setPredictNum(2)
.setPredictionCol("pred")
.setValueCol("mtable_agg_series");
deepARPredictBatchOp
.linkFrom(
deepARTrainBatchOp.linkFrom(memSourceBatchOp),
groupByBatchOp.linkFrom(memSourceBatchOp)
)
.print();
}
}
运行结果
| id | mtable_agg_series | pred |
|——+—————————————————————————————————————————————————————————————————————————————————————————————————————————————+————————————————————————————————————————————————————————————————————————————-|
| 0 | {“data”:{“ts”:[“2021-11-01 00:00:00.0”,”2021-11-02 00:00:00.0”,”2021-11-03 00:00:00.0”,”2021-11-04 00:00:00.0”,”2021-11-05 00:00:00.0”],”series”:[100.0,100.0,100.0,100.0,100.0]},”schema”:”ts TIMESTAMP,series DOUBLE”} | {“data”:{“ts”:[“2021-11-06 00:00:00.0”,”2021-11-07 00:00:00.0”],”series”:[31.424224853515625,39.10265350341797]},”schema”:”ts TIMESTAMP,series DOUBLE”} |