Java 类名:com.alibaba.alink.operator.stream.clustering.StreamingKMeansStreamOp
Python 类名:StreamingKMeansStreamOp
功能介绍
流式Kmeans聚类算法,对流数据进行Kmeans聚类。流式KMeans聚类,需要三个输入:
- 训练好的批式的KMeans模型
- 流式的更新模型的数据
- 流式的需要预测的数据
若只有两个输入,那么第一个输入被算法识别为训练好的初始Kmeans模型,第二个输入被同时用作”流式的更新模型的数据”和”流式的需要预测的数据”。
本算法组件会根据2流入的数据在固定的timeinterval内更新模型,这个模型会用来预测3的输入数据。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
halfLife | 半生命周期 | 半生命周期 | Integer | ✓ | ||
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
timeInterval | 时间间隔 | 时间间隔,单位秒 | Long | ✓ | ||
predictionClusterCol | 预测距离列名 | 预测距离列名 | String | |||
predictionDistanceCol | 预测距离列名 | 预测距离列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[0, "0 0 0"],
[1, "0.1,0.1,0.1"],
[2, "0.2,0.2,0.2"],
[3, "9 9 9"],
[4, "9.1 9.1 9.1"],
[5, "9.2 9.2 9.2"]
])
inOp = BatchOperator.fromDataframe(df, schemaStr='id int, vec string')
stream_data = StreamOperator.fromDataframe(df, schemaStr='id int, vec string')
init_model = KMeansTrainBatchOp()\
.setVectorCol("vec")\
.setK(2)\
.linkFrom(inOp)
streamingkmeans = StreamingKMeansStreamOp(init_model) \
.setTimeInterval(1) \
.setHalfLife(1) \
.setReservedCols(["vec"])
pred = streamingkmeans.linkFrom(stream_data, stream_data)
pred.print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.clustering.StreamingKMeansStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class StreamingKMeansStreamOpTest {
@Test
public void testStreamingKMeansStreamOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(0, "0 0 0"),
Row.of(1, "0.1,0.1,0.1"),
Row.of(2, "0.2,0.2,0.2"),
Row.of(3, "9 9 9"),
Row.of(4, "9.1 9.1 9.1"),
Row.of(5, "9.2 9.2 9.2")
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, vec string");
StreamOperator <?> stream_data = new MemSourceStreamOp(df, "id int, vec string");
BatchOperator <?> init_model = new KMeansTrainBatchOp()
.setVectorCol("vec")
.setK(2)
.linkFrom(inOp);
StreamOperator <?> streamingkmeans = new StreamingKMeansStreamOp(init_model)
.setTimeInterval(1L)
.setHalfLife(1)
.setReservedCols("vec");
StreamOperator <?> pred = streamingkmeans.linkFrom(stream_data, stream_data);
pred.print();
StreamOperator.execute();
}
}
运行结果
vec | cluster_id |
---|---|
0.2,0.2,0.2 | 1 |
0 0 0 | 1 |
0.1,0.1,0.1 | 1 |
9.2 9.2 9.2 | 0 |
9.1 9.1 9.1 | 0 |
9 9 9 | 0 |