Java 类名:com.alibaba.alink.operator.batch.recommendation.NegativeItemSamplingBatchOp
Python 类名:NegativeItemSamplingBatchOp
功能介绍
当给定user-item pair数据的时候,为数据生成若干负样本数据,构成训练数据。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| samplingFactor | 采样因子 | 采样因子 | Integer | | | 3 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
[1, 1],
[2, 2],
[2, 3],
[4, 1],
[4, 2],
[4, 3],
])
data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint')
NegativeItemSamplingBatchOp().linkFrom(data).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.recommendation.NegativeItemSamplingBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class NegativeItemSamplingBatchOpTest {
@Test
public void testNegativeItemSamplingBatchOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of(1, 1),
Row.of(2, 2),
Row.of(2, 3),
Row.of(4, 1),
Row.of(4, 2),
Row.of(4, 3)
);
BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int");
new NegativeItemSamplingBatchOp().linkFrom(data).print();
}
}
运行结果
| user | item | label | | —- | —- | —- |
| 2 | 1 | 0 |
| 1 | 3 | 0 |
| 4 | 1 | 1 |
| 4 | 2 | 1 |
| 1 | 3 | 0 |
| 2 | 1 | 0 |
| 2 | 1 | 0 |
| 4 | 3 | 1 |
| 2 | 2 | 1 |
| 2 | 3 | 1 |
| 2 | 1 | 0 |
| 1 | 1 | 1 |
| 2 | 1 | 0 |
| 1 | 3 | 0 |
| 2 | 1 | 0 |