Java 类名:com.alibaba.alink.operator.batch.feature.HashCrossFeatureBatchOp
Python 类名:HashCrossFeatureBatchOp
功能介绍
将选定的离散列组合成单列的向量类型的数据。
算法原理
将选定列的数据的字符串形式以逗号为分隔符拼接起来,然后使用 murmur3_32
函数得到哈希值,并将哈希值通过平移的方式转换至
[0, 特征数)
之间。
使用方式
使用需要设置选取列的列名(selectCols
)和输出列名(outputCol
),特征数通过参数 numFeatures
设置,特征数也是
输出列中向量的长度。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | ||
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
numFeatures | 向量维度 | 生成向量长度 | Integer | 262144 | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["1.0", "1.0", 1.0, 1],
["1.0", "1.0", 0.0, 1],
["1.0", "0.0", 1.0, 1],
["1.0", "0.0", 1.0, 1],
["2.0", "3.0", None, 0],
["2.0", "3.0", 1.0, 0],
["0.0", "1.0", 2.0, 0],
["0.0", "1.0", 1.0, 0]])
data = BatchOperator.fromDataframe(df, schemaStr="f0 string, f1 string, f2 double, label bigint")
cross = HashCrossFeatureBatchOp().setSelectedCols(['f0', 'f1', 'f2']).setOutputCol('cross').setNumFeatures(4)
print(cross.linkFrom(data))
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.HashCrossFeatureBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class HashCrossFeatureBatchOpTest {
@Test
public void testHashCrossFeatureBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("1.0", "1.0", 1.0, 1),
Row.of("1.0", "1.0", 0.0, 1),
Row.of("1.0", "0.0", 1.0, 1),
Row.of("1.0", "0.0", 1.0, 1),
Row.of("2.0", "3.0", null, 0),
Row.of("2.0", "3.0", 1.0, 0),
Row.of("0.0", "1.0", 2.0, 0)
);
BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string, f1 string, f2 double, label bigint");
BatchOperator <?> cross = new HashCrossFeatureBatchOp().setSelectedCols("f0", "f1", "f2").setOutputCol("cross")
.setNumFeatures(4);
System.out.print(cross.linkFrom(data));
}
}
运行结果
| f0 | f1 | f2 | label | cross | | —- | —- | —- | —- | —- |
| 1.0 | 1.0 | 0.0000 | 1 | $36$33:1.0 |
| 1.0 | 1.0 | 1.0000 | 1 | $36$15:1.0 |
| 1.0 | 0.0 | 1.0000 | 1 | $36$33:1.0 |
| 1.0 | 0.0 | 1.0000 | 1 | $36$33:1.0 |
| 2.0 | 3.0 | 1.0000 | 0 | $36$20:1.0 |
| 2.0 | 3.0 | None | 0 | |
| 0.0 | 1.0 | 1.0000 | 0 | $36$28:1.0 |
| 0.0 | 1.0 | 2.0000 | 0 | $36$33:1.0 |