Java 类名:com.alibaba.alink.operator.batch.regression.RandomForestRegPredictBatchOp
Python 类名:RandomForestRegPredictBatchOp
功能介绍
- 随机森林回归是一种常用的树模型,由于bagging的过程,可以避免过拟合
- 随机森林回归组件支持稠密数据格式
- 支持带样本权重的训练
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[1.0, "A", 0, 0, 0],
[2.0, "B", 1, 1, 0],
[3.0, "C", 2, 2, 1],
[4.0, "D", 3, 3, 1]
])
batchSource = BatchOperator.fromDataframe(df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int')
streamSource = StreamOperator.fromDataframe(df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int')
trainOp = RandomForestRegTrainBatchOp()\
.setLabelCol('label')\
.setFeatureCols(['f0', 'f1', 'f2', 'f3'])\
.linkFrom(batchSource)
RandomForestRegPredictBatchOp()\
.setPredictionCol('pred')\
.linkFrom(trainOp, batchSource).print()
RandomForestRegPredictStreamOp(trainOp)\
.setPredictionCol('pred')\
.linkFrom(streamSource)\
.print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.regression.RandomForestRegPredictBatchOp;
import com.alibaba.alink.operator.batch.regression.RandomForestRegTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.regression.RandomForestRegPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class RandomForestRegPredictBatchOpTest {
@Test
public void testRandomForestRegPredictBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(1.0, "A", 0, 0, 0),
Row.of(2.0, "B", 1, 1, 0),
Row.of(3.0, "C", 2, 2, 1),
Row.of(4.0, "D", 3, 3, 1)
);
BatchOperator <?> batchSource = new MemSourceBatchOp(df, " f0 double, f1 string, f2 int, f3 int, label int");
StreamOperator <?> streamSource = new MemSourceStreamOp(df, " f0 double, f1 string, f2 int, f3 int, label "
+ "int");
BatchOperator <?> trainOp = new RandomForestRegTrainBatchOp()
.setLabelCol("label")
.setFeatureCols("f0", "f1", "f2", "f3")
.linkFrom(batchSource);
new RandomForestRegPredictBatchOp()
.setPredictionCol("pred")
.linkFrom(trainOp, batchSource).print();
new RandomForestRegPredictStreamOp(trainOp)
.setPredictionCol("pred")
.linkFrom(streamSource)
.print();
StreamOperator.execute();
}
}
运行结果
批预测结果
| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |
| 1.0000 | A | 0 | 0 | 0 | 0.0000 |
| 2.0000 | B | 1 | 1 | 0 | 0.0000 |
| 3.0000 | C | 2 | 2 | 1 | 1.0000 |
| 4.0000 | D | 3 | 3 | 1 | 1.0000 |
流预测结果
| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |
| 1.0000 | A | 0 | 0 | 0 | 0.0000 |
| 4.0000 | D | 3 | 3 | 1 | 1.0000 |
| 2.0000 | B | 1 | 1 | 0 | 0.0000 |
| 3.0000 | C | 2 | 2 | 1 | 1.0000 |