Java 类名:com.alibaba.alink.operator.stream.feature.PcaPredictStreamOp
Python 类名:PcaPredictStreamOp
功能介绍
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关,作为新的综合指标。详细介绍请见维基百科链接wiki。
主成分分析功能包含主成分分析训练和主成分分析预测(批和流)。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 1, 1, 2.0, True],
["c", 1, 2, -3.0, True],
["a", 2, 2, 2.0, False],
["c", 0, 0, 0.0, False]
])
batchSource = BatchOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')
streamSource = StreamOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')
trainOp = QuantileDiscretizerTrainBatchOp()\
.setSelectedCols(['f_double'])\
.setNumBuckets(8)\
.linkFrom(batchSource)
predictBatchOp = QuantileDiscretizerPredictBatchOp()\
.setSelectedCols(['f_double'])
predictBatchOp.linkFrom(trainOp,batchSource).print()
predictStreamOp = QuantileDiscretizerPredictStreamOp(trainOp)\
.setSelectedCols(['f_double'])
predictStreamOp.linkFrom(streamSource).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp;
import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.QuantileDiscretizerPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class PcaPredictStreamOpTest {
@Test
public void testPcaPredictStreamOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 1, 1, 2.0, true),
Row.of("c", 1, 2, -3.0, true),
Row.of("a", 2, 2, 2.0, false),
Row.of("c", 0, 0, 0.0, false)
);
BatchOperator <?> batchSource = new MemSourceBatchOp(df,
"f_string string, f_long int, f_int int, f_double double, f_boolean boolean");
StreamOperator <?> streamSource = new MemSourceStreamOp(df,
"f_string string, f_long int, f_int int, f_double double, f_boolean boolean");
BatchOperator <?> trainOp = new QuantileDiscretizerTrainBatchOp()
.setSelectedCols("f_double")
.setNumBuckets(8)
.linkFrom(batchSource);
BatchOperator <?> predictBatchOp = new QuantileDiscretizerPredictBatchOp()
.setSelectedCols("f_double");
predictBatchOp.linkFrom(trainOp, batchSource).print();
StreamOperator <?> predictStreamOp = new QuantileDiscretizerPredictStreamOp(trainOp)
.setSelectedCols("f_double");
predictStreamOp.linkFrom(streamSource).print();
StreamOperator.execute();
}
}
运行结果
批预测结果
| f_string | f_long | f_int | f_double | f_boolean | | —- | —- | —- | —- | —- |
| a | 1 | 1 | 2 | true |
| c | 1 | 2 | 0 | true |
| a | 2 | 2 | 2 | false |
| c | 0 | 0 | 1 | false |
流预测结果
| f_string | f_long | f_int | f_double | f_boolean | | —- | —- | —- | —- | —- |
| a | 2 | 2 | 2 | false |
| c | 1 | 2 | 0 | true |
| c | 0 | 0 | 1 | false |
| a | 1 | 1 | 2 | true |