Java 类名:com.alibaba.alink.operator.stream.classification.NaiveBayesPredictStreamOp
Python 类名:NaiveBayesPredictStreamOp

功能介绍

使用朴素贝叶斯模型用于多分类任务的预测。

使用方式

该组件是预测组件,需要配合训练组件 NaiveBayesTrainBatchOp 使用。

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |

| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |

| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |

| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |

| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |

| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |

| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |

| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df_data = pd.DataFrame([
  5. [1.0, 1.0, 0.0, 1.0, 1],
  6. [1.0, 0.0, 1.0, 1.0, 1],
  7. [1.0, 0.0, 1.0, 1.0, 1],
  8. [0.0, 1.0, 1.0, 0.0, 0],
  9. [0.0, 1.0, 1.0, 0.0, 0],
  10. [0.0, 1.0, 1.0, 0.0, 0],
  11. [0.0, 1.0, 1.0, 0.0, 0],
  12. [1.0, 1.0, 1.0, 1.0, 1],
  13. [0.0, 1.0, 1.0, 0.0, 0]
  14. ])
  15. batchData = BatchOperator.fromDataframe(df_data, schemaStr='f0 double, f1 double, f2 double, f3 double, label int')
  16. # stream data
  17. streamData = StreamOperator.fromDataframe(df_data, schemaStr='f0 double, f1 double, f2 double, f3 double, label int')
  18. colnames = ["f0","f1","f2", "f3"]
  19. ns = NaiveBayesTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
  20. model = batchData.link(ns)
  21. predictor = NaiveBayesPredictStreamOp(model).setPredictionCol("pred")
  22. predictor.linkFrom(streamData).print()
  23. StreamOperator.execute()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.classification.NaiveBayesTrainBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import com.alibaba.alink.operator.stream.StreamOperator;
  6. import com.alibaba.alink.operator.stream.classification.NaiveBayesPredictStreamOp;
  7. import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
  8. import org.junit.Test;
  9. import java.util.Arrays;
  10. import java.util.List;
  11. public class NaiveBayesPredictStreamOpTest {
  12. @Test
  13. public void testNaiveBayesPredictStreamOp() throws Exception {
  14. List <Row> df_data = Arrays.asList(
  15. Row.of(1.0, 1.0, 0.0, 1.0, 1),
  16. Row.of(1.0, 0.0, 1.0, 1.0, 1),
  17. Row.of(1.0, 0.0, 1.0, 1.0, 1),
  18. Row.of(0.0, 1.0, 1.0, 0.0, 0),
  19. Row.of(0.0, 1.0, 1.0, 0.0, 0),
  20. Row.of(0.0, 1.0, 1.0, 0.0, 0),
  21. Row.of(0.0, 1.0, 1.0, 0.0, 0),
  22. Row.of(1.0, 1.0, 1.0, 1.0, 1),
  23. Row.of(0.0, 1.0, 1.0, 0.0, 0)
  24. );
  25. BatchOperator <?> batchData = new MemSourceBatchOp(df_data,
  26. "f0 double, f1 double, f2 double, f3 double, label int");
  27. StreamOperator <?> streamData = new MemSourceStreamOp(df_data,
  28. "f0 double, f1 double, f2 double, f3 double, label int");
  29. String[] colnames = new String[] {"f0", "f1", "f2", "f3"};
  30. BatchOperator <?> ns = new NaiveBayesTrainBatchOp().setFeatureCols(colnames).setLabelCol("label");
  31. BatchOperator <?> model = batchData.link(ns);
  32. StreamOperator <?> predictor = new NaiveBayesPredictStreamOp(model).setPredictionCol("pred");
  33. predictor.linkFrom(streamData).print();
  34. StreamOperator.execute();
  35. }
  36. }

运行结果

| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |

| 1.0 | 1.0 | 0.0 | 1.0 | 1 | 1 |

| 1.0 | 0.0 | 1.0 | 1.0 | 1 | 1 |

| 1.0 | 0.0 | 1.0 | 1.0 | 1 | 1 |

| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |

| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |

| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |

| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |

| 1.0 | 1.0 | 1.0 | 1.0 | 1 | 1 |

| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |