Java 类名:com.alibaba.alink.operator.batch.dataproc.MaxAbsScalerTrainBatchOp
Python 类名:MaxAbsScalerTrainBatchOp
功能介绍
- 绝对值最大标准化是对数据按照最大值和最小值进行标准化的组件, 将数据归一到-1和1之间。
- 使用绝对值最大标准化预测组件使用生成的模型,转换输入的数据
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- | | selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 10.0, 100],
["b", -2.5, 9],
["c", 100.2, 1],
["d", -99.9, 100],
["a", 1.4, 1],
["b", -2.2, 9],
["c", 100.9, 1]
])
colnames = ["col1", "col2", "col3"]
selectedColNames = ["col2", "col3"]
inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')
# train
trainOp = MaxAbsScalerTrainBatchOp()\
.setSelectedCols(selectedColNames)
trainOp.linkFrom(inOp)
# batch predict
predictOp = MaxAbsScalerPredictBatchOp()
predictOp.linkFrom(trainOp, inOp).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.MaxAbsScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.MaxAbsScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class MaxAbsScalerTrainBatchOpTest {
@Test
public void testMaxAbsScalerTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 10.0, 100),
Row.of("b", -2.5, 9),
Row.of("c", 100.2, 1),
Row.of("d", -99.9, 100),
Row.of("a", 1.4, 1),
Row.of("b", -2.2, 9),
Row.of("c", 100.9, 1)
);
String[] selectedColNames = new String[] {"col2", "col3"};
BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int");
BatchOperator <?> trainOp = new MaxAbsScalerTrainBatchOp()
.setSelectedCols(selectedColNames);
trainOp.linkFrom(inOp);
BatchOperator <?> predictOp = new MaxAbsScalerPredictBatchOp();
predictOp.linkFrom(trainOp, inOp).print();
}
}
运行结果
| col1 | col2 | col3 | | —- | —- | —- |
| a | 0.0991 | 1.0000 |
| b | -0.0248 | 0.0900 |
| c | 0.9931 | 0.0100 |
| d | -0.9901 | 1.0000 |
| a | 0.0139 | 0.0100 |
| b | -0.0218 | 0.0900 |
| c | 1.0000 | 0.0100 |