Java 类名:com.alibaba.alink.operator.batch.recommendation.SwingRecommBatchOp
Python 类名:SwingRecommBatchOp

功能介绍

Swing 是一种被广泛使用的item召回算法,算法详细介绍可以参考SwingTrainBatchOp组件。
该组件为Swing的批处理预测组件,输入为 SwingTrainBatchOp 输出的模型和要预测的item列。

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| itemCol | Item列列名 | Item列列名 | String | ✓ | | |

| recommCol | 推荐结果列名 | 推荐结果列名 | String | ✓ | | |

| initRecommCol | 初始推荐列列名 | 初始推荐列列名 | String | | 所选列类型为 [M_TABLE] | null |

| k | 推荐TOP数量 | 推荐TOP数量 | Integer | | | 10 |

| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |

| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df_data = pd.DataFrame([
  5. ["a1", "11L", 2.2],
  6. ["a1", "12L", 2.0],
  7. ["a2", "11L", 2.0],
  8. ["a2", "12L", 2.0],
  9. ["a3", "12L", 2.0],
  10. ["a3", "13L", 2.0],
  11. ["a4", "13L", 2.0],
  12. ["a4", "14L", 2.0],
  13. ["a5", "14L", 2.0],
  14. ["a5", "15L", 2.0],
  15. ["a6", "15L", 2.0],
  16. ["a6", "16L", 2.0],
  17. ])
  18. data = BatchOperator.fromDataframe(df_data, schemaStr='user string, item string, rating double')
  19. model = SwingTrainBatchOp()\
  20. .setUserCol("user")\
  21. .setItemCol("item")\
  22. .linkFrom(data)
  23. predictor = SwingRecommBatchOp()\
  24. .setItemCol("item")\
  25. .setRecommCol("prediction_result")
  26. predictor.linkFrom(model, data).print()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.recommendation.SwingRecommBatchOp;
  4. import com.alibaba.alink.operator.batch.recommendation.SwingTrainBatchOp;
  5. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  6. import org.junit.Test;
  7. import java.util.Arrays;
  8. import java.util.List;
  9. public class SwingRecommBatchOpTest {
  10. @Test
  11. public void testSwingRecommBatchOp() throws Exception {
  12. List <Row> df_data = Arrays.asList(
  13. Row.of("a1", "11L", 2.2),
  14. Row.of("a1", "12L", 2.0),
  15. Row.of("a2", "11L", 2.0),
  16. Row.of("a2", "12L", 2.0),
  17. Row.of("a3", "12L", 2.0),
  18. Row.of("a3", "13L", 2.0),
  19. Row.of("a4", "13L", 2.0),
  20. Row.of("a4", "14L", 2.0),
  21. Row.of("a5", "14L", 2.0),
  22. Row.of("a5", "15L", 2.0),
  23. Row.of("a6", "15L", 2.0),
  24. Row.of("a6", "16L", 2.0)
  25. );
  26. BatchOperator <?> data = new MemSourceBatchOp(df_data, "user string, item string, rating double");
  27. BatchOperator <?> model = new SwingTrainBatchOp()
  28. .setUserCol("user")
  29. .setItemCol("item")
  30. .linkFrom(data);
  31. BatchOperator <?> predictor = new SwingRecommBatchOp()
  32. .setItemCol("item")
  33. .setRecommCol("prediction_result");
  34. predictor.linkFrom(model, data).print();
  35. }
  36. }

运行结果

| user | item | rating | prediction_result | | —- | —- | —- | —- |

| a1 | 11L | 2.2000 | {“item”:”[“12L”]”,”score”:”[0.12805642187595367]”} |

| a1 | 12L | 2.0000 | {“item”:”[“11L”]”,”score”:”[0.11662912368774414]”} |

| a2 | 11L | 2.0000 | {“item”:”[“12L”]”,”score”:”[0.12805642187595367]”} |

| a2 | 12L | 2.0000 | {“item”:”[“11L”]”,”score”:”[0.11662912368774414]”} |

| a3 | 12L | 2.0000 | {“item”:”[“11L”]”,”score”:”[0.11662912368774414]”} |

| a3 | 13L | 2.0000 | null |

| a4 | 13L | 2.0000 | null |

| a4 | 14L | 2.0000 | null |

| a5 | 14L | 2.0000 | null |

| a5 | 15L | 2.0000 | null |

| a6 | 15L | 2.0000 | null |

| a6 | 16L | 2.0000 | null |