Multivariate data 多元数据 refers to a data set involving two or more attributes or variables (the usual case!).
    This is addressed by transforming the multivariate outlier detection task into a univariate outlier detection problem. 这是通过将多变量异常检测任务转换成单变量异常检测问题来解决的。

    Method 1. Compute Mahalaobis distance
    Let ō be the mean vector for a multivariate data set. Let S be the covariance matrix协方差矩阵.
    Mahalaobis distance for an object o to ō is defined as
    Parametric Methods: Multivariate Outliers - 图1
    where Parametric Methods: Multivariate Outliers - 图2 and Parametric Methods: Multivariate Outliers - 图3 are the operators for matrix transpose and inverse respectively.
    Using this transformation, we now have a univariate data set Parametric Methods: Multivariate Outliers - 图4
    Then use the Grubb’s test on this univariate data set to identify outliers.

    Method 2. Use χ2 –statistic
    **
    This method assumes a normal distribution.
    For each Parametric Methods: Multivariate Outliers - 图5 dimensional object Parametric Methods: Multivariate Outliers - 图6 with dimension values Parametric Methods: Multivariate Outliers - 图7, calculate
    Parametric Methods: Multivariate Outliers - 图8
    where Parametric Methods: Multivariate Outliers - 图9 is the mean of the i-dimension among all objects.
    If this χ2 –statistic is large for Parametric Methods: Multivariate Outliers - 图10, then Parametric Methods: Multivariate Outliers - 图11 is an outlier.