Overview 概述

  • One of the most successful _classification _methods for both linear and nonlinear data. 同时适用于线性、非线性数据分类。
  • It uses a nonlinear mapping to transform the original training data into a higher dimension. 使用非线性图谱把训练数据转化为更高维数据。
  • With the new dimension, it searches for the linear optimal separating hyperplane (i.e., “decision boundary”). 利用超平面(决策平面)分割新的高纬度数据机。
  • With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane. 通过适当的非线性图谱把数据集映射到高维时,总能找到一个超平面分割开来两类数据。
  • SVM finds this hyperplane using support vectors (“essential” training tuples) and margins (defined by the support vectors). 通过支持向量和边界找到超平面。

Algorithms 算法

支持向量机的训练可以被分为线性可分情况和非线性可分情况。
Training of SVM can be distinguished by

Linearly Inseparable Case 线性不可分情况