Java
先看一个最简单的打印
System.out.println(new Object());
会输出该类的全限定类名和一串字符串:
java.lang.Object@6659c656
@符号后面的是什么?是 hashcode 还是对象的内存地址?还是其他的什么值?
其实@后面的只是对象的 hashcode 值,16进制展示的 hashcode 而已,来验证一下:
Object o = new Object();int hashcode = o.hashCode();// toStringSystem.out.println(o);// hashcode 十六进制System.out.println(Integer.toHexString(hashcode));// hashcodeSystem.out.println(hashcode);// 这个方法,也是获取对象的 hashcode;不过和 Object.hashcode 不同的是,该方法会无视重写的hashcodeSystem.out.println(System.identityHashCode(o));
输出结果:
java.lang.Object@6659c6566659c65617171595101717159510
那对象的 hashcode 到底是怎么生成的呢?真的就是内存地址吗?
本文内容基于 JAVA 8 HotSpot
hashCode 的生成逻辑
JVM 里生成 hashCode 的逻辑并没有那么简单,它提供了好几种策略,每种策略的生成结果都不同。
来看一下 openjdk 源码里生成 hashCode 的核心方法:
static inline intptr_t get_next_hash(Thread * Self, oop obj) {intptr_t value = 0 ;if (hashCode == 0) {// This form uses an unguarded global Park-Miller RNG,// so it's possible for two threads to race and generate the same RNG.// On MP system we'll have lots of RW access to a global, so the// mechanism induces lots of coherency traffic.value = os::random() ;} elseif (hashCode == 1) {// This variation has the property of being stable (idempotent)// between STW operations. This can be useful in some of the 1-0// synchronization schemes.intptr_t addrBits = intptr_t(obj) >> 3 ;value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;} elseif (hashCode == 2) {value = 1 ; // for sensitivity testing} elseif (hashCode == 3) {value = ++GVars.hcSequence ;} elseif (hashCode == 4) {value = intptr_t(obj) ;} else {// Marsaglia's xor-shift scheme with thread-specific state// This is probably the best overall implementation -- we'll// likely make this the default in future releases.unsigned t = Self->_hashStateX ;t ^= (t << 11) ;Self->_hashStateX = Self->_hashStateY ;Self->_hashStateY = Self->_hashStateZ ;Self->_hashStateZ = Self->_hashStateW ;unsigned v = Self->_hashStateW ;v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;Self->_hashStateW = v ;value = v ;}value &= markOopDesc::hash_mask;if (value == 0) value = 0xBAD ;assert (value != markOopDesc::no_hash, "invariant") ;TEVENT (hashCode: GENERATE) ;return value;}
从源码里可以发现,生成策略是由一个 hashCode 的全局变量控制的,默认为5;而这个变量的定义在另一个头文件里:
product(intx, hashCode, 5,"(Unstable) select hashCode generation algorithm" )
源码里很清楚了……(非稳定)选择 hashCode 生成的算法,而且这里的定义,是可以由 jvm 启动参数来控制的,先来确认下默认值:
java -XX:+PrintFlagsFinal -version | grep hashCodeintx hashCode = 5 {product}openjdk version "1.8.0_282"OpenJDK Runtime Environment (AdoptOpenJDK)(build 1.8.0_282-b08)OpenJDK 64-Bit Server VM (AdoptOpenJDK)(build 25.282-b08, mixed mode)
所以可以通过 jvm 的启动参数来配置不同的 hashcode 生成算法,测试不同算法下的生成结果:
-XX:hashCode=N
第 0 种算法
if (hashCode == 0) {// This form uses an unguarded global Park-Miller RNG,// so it's possible for two threads to race and generate the same RNG.// On MP system we'll have lots of RW access to a global, so the// mechanism induces lots of coherency traffic.value = os::random();}
这种生成算法,使用的一种Park-Miller RNG的随机数生成策略。不过需要注意的是……这个随机算法在高并发的时候会出现自旋等待
第 1 种算法
if (hashCode == 1) {// This variation has the property of being stable (idempotent)// between STW operations. This can be useful in some of the 1-0// synchronization schemes.intptr_t addrBits = intptr_t(obj) >> 3 ;value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;}
这个算法,真的是对象的内存地址了,直接获取对象的 intptr_t 类型指针
第 2 种算法
if (hashCode == 2) {value = 1 ; // for sensitivity testing}
这个就不用解释了……固定返回 1,应该是用于内部的测试场景。
有兴趣的同学,可以试试-XX:hashCode=2来开启这个算法,看看 hashCode 结果是不是都变成 1 了。
第 3 种算法
if (hashCode == 3) {value = ++GVars.hcSequence ;}
这个算法也很简单,自增,所有对象的 hashCode 都使用这一个自增变量。来试试效果:
System.out.println(new Object());System.out.println(new Object());System.out.println(new Object());System.out.println(new Object());System.out.println(new Object());System.out.println(new Object());//outputjava.lang.Object@144java.lang.Object@145java.lang.Object@146java.lang.Object@147java.lang.Object@148java.lang.Object@149
第 4 种算法
if (hashCode == 4) {value = intptr_t(obj) ;}
这里和第 1 种算法其实区别不大,都是返回对象地址,只是第 1 种算法是一个变体。
第 5 种算法
最后一种,也是默认的生成算法,hashCode 配置不等于 0/1/2/3/4 时使用该算法:
else {// Marsaglia's xor-shift scheme with thread-specific state// This is probably the best overall implementation -- we'll// likely make this the default in future releases.unsigned t = Self->_hashStateX ;t ^= (t << 11) ;Self->_hashStateX = Self->_hashStateY ;Self->_hashStateY = Self->_hashStateZ ;Self->_hashStateZ = Self->_hashStateW ;unsigned v = Self->_hashStateW ;v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;Self->_hashStateW = v ;value = v ;}
这里是通过当前状态值进行异或(XOR)运算得到的一个 hash 值,相比前面的自增算法和随机算法来说效率更高,但重复率应该也会相对增高,不过 hashCode 重复又有什么关系呢……
本来 jvm 就不保证这个值一定不重复,像 HashMap 里的链地址法就是解决 hash 冲突用的.
