Java Sharding-JDBC
项目中数据量越来越大,会导致一些数据库的性能问题。借助一些分库分表的中间件,实现自动化分库分表实现。Sharding-JDBC目前成熟度最高并且应用最广的Java分库分表的客户端组件
Sharding-JDBC官方文档:https://shardingsphere.apache.org/document/current/cn/overview/

核心概念

在使用Sharding-JDBC之前,一定是先理解清楚下面几个核心概念。

逻辑表

水平拆分的数据库(表)的相同逻辑和数据结构表的总称。例:订单数据根据主键尾数拆分为10张表,分别是t_order_0t_order_9,他们的逻辑表名为t_order

真实表

在分片的数据库中真实存在的物理表。即上个示例中的t_order_0t_order_9

数据节点

数据分片的最小单元。由数据源名称和数据表组成,例:ds_0.t_order_0

绑定表

指分片规则一致的主表和子表。例如:t_order表和t_order_item表,均按照order_id分片,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大大提升。举例说明,如果SQL为:

  1. SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

假设t_ordert_order_item对应的真实表各有2个,那么真实表就有t_order_0t_order_1t_order_item_0t_order_item_1。在不配置绑定表关系时,假设分片键order_id将数值10路由至第0片,将数值11路由至第1片,那么路由后的SQL应该为4条,它们呈现为笛卡尔积:

  1. SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
  2. SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
  3. SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
  4. SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

在配置绑定表关系后,路由的SQL应该为2条:

  1. SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
  2. SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

广播表

指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全一致。适用于数据量不大且需要与海量数据的表进行关联查询的场景,例如:字典表。

数据分片

分片键

用于分片的数据库字段,是将数据库(表)水平拆分的关键字段。例:将订单表中的订单主键的尾数取模分片,则订单主键为分片字段。SQL 中如果无分片字段,将执行全路由,性能较差。除了对单分片字段的支持,Sharding-JDBC 也支持根据多个字段进行分片。

分片算法

通过分片算法将数据分片,支持通过=、>=、<=、>、<、BETWEEN和IN分片。分片算法需要应用方开发者自行实现,可实现的灵活度非常高。
目前提供4种分片算法。由于分片算法和业务实现紧密相关,因此并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。

精确分片算法

对应 PreciseShardingAlgorithm用于处理使用单一键作为分片键的 = 与 IN 进行分片的场景。需要配合 StandardShardingStrategy 使用。

范围分片算法

对应 RangeShardingAlgorithm用于处理使用单一键作为分片键的 BETWEEN AND、>、<、>=、<=进行分片的场景。需要配合 StandardShardingStrategy 使用。

复合分片算法

对应 ComplexKeysShardingAlgorithm,用于处理使用多键作为分片键进行分片的场景,包含多个分片键的逻辑较复杂,需要应用开发者自行处理其中的复杂度。需要配合 ComplexShardingStrategy 使用。

Hint分片算法

对应 HintShardingAlgorithm用于处理通过Hint指定分片值而非从SQL中提取分片值的场景。需要配合 HintShardingStrategy 使用。

分片策略

包含分片键和分片算法,由于分片算法的独立性,将其独立抽离。真正可用于分片操作的是分片键 + 分片算法,也就是分片策略。目前提供 5 种分片策略。

标准分片策略

对应 StandardShardingStrategy。提供对 SQ L语句中的 =, >, <, >=, <=, IN 和 BETWEEN AND 的分片操作支持。StandardShardingStrategy 只支持单分片键,提供 PreciseShardingAlgorithmRangeShardingAlgorithm 两个分片算法。PreciseShardingAlgorithm 是必选的,用于处理 = 和 IN 的分片。RangeShardingAlgorithm 是可选的,用于处理 BETWEEN AND, >, <, >=, <=分片,如果不配置 RangeShardingAlgorithm,SQL 中的 BETWEEN AND 将按照全库路由处理。

复合分片策略

对应 ComplexShardingStrategy。复合分片策略。提供对 SQL 语句中的 =, >, <, >=, <=, IN 和 BETWEEN AND 的分片操作支持。ComplexShardingStrategy 支持多分片键,由于多分片键之间的关系复杂,因此并未进行过多的封装,而是直接将分片键值组合以及分片操作符透传至分片算法,完全由应用开发者实现,提供最大的灵活度。

行表达式分片策略

对应 InlineShardingStrategy。使用 Groovy 的表达式,提供对 SQL 语句中的 = 和 IN的分片操作支持,只支持单分片键。对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如: t_user_$->{u_id % 8} 表示 t_user 表根据 u_id 模 8,而分成 8 张表,表名称为 t_user_0t_user_7可以认为是精确分片算法的简易实现

Hint分片策略

对应 HintShardingStrategy。通过 Hint 指定分片值而非从 SQL 中提取分片值的方式进行分片的策略。

分布式主键

用于在分布式环境下,生成全局唯一的id。Sharding-JDBC 提供了内置的分布式主键生成器,例如 UUIDSNOWFLAKE。还抽离出分布式主键生成器的接口,方便用户自行实现自定义的自增主键生成器。为了保证数据库性能,主键id还必须趋势递增,避免造成频繁的数据页面分裂。

读写分离

提供一主多从的读写分离配置,可独立使用,也可配合分库分表使用。

  • 同一线程且同一数据库连接内,如有写入操作,以后的读操作均从主库读取,用于保证数据一致性
  • 基于Hint的强制主库路由。
  • 主从模型中,事务中读写均用主库。

    执行流程

    Sharding-JDBC 的原理总结起来很简单: 核心由 SQL解析 => 执行器优化 => SQL路由 => SQL改写 => SQL执行 => 结果归并的流程组成。
    image.png

    项目实战

    spring-boot项目实战

    引入依赖

    1. <dependency>
    2. <groupId>org.apache.shardingsphere</groupId>
    3. <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
    4. <version>4.0.1</version>
    5. </dependency>

    数据源配置

    如果使用sharding-jdbc-spring-boot-starter, 并且数据源以及数据分片都使用shardingsphere进行配置,对应的数据源会自动创建并注入到spring容器中。
    1. spring.shardingsphere.datasource.names=ds0,ds1
    2. spring.shardingsphere.datasource.ds0.type=org.apache.commons.dbcp.BasicDataSource
    3. spring.shardingsphere.datasource.ds0.driver-class-name=com.mysql.jdbc.Driver
    4. spring.shardingsphere.datasource.ds0.url=jdbc:mysql://localhost:3306/ds0
    5. spring.shardingsphere.datasource.ds0.username=root
    6. spring.shardingsphere.datasource.ds0.password=
    7. spring.shardingsphere.datasource.ds1.type=org.apache.commons.dbcp.BasicDataSource
    8. spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
    9. spring.shardingsphere.datasource.ds1.url=jdbc:mysql://localhost:3306/ds1
    10. spring.shardingsphere.datasource.ds1.username=root
    11. spring.shardingsphere.datasource.ds1.password=
    12. # 其它分片配置
    但是在已有的项目中,数据源配置是单独的。因此要禁用sharding-jdbc-spring-boot-starter里面的自动装配,而是参考源码自己重写数据源配置。需要在启动类上加上@SpringBootApplication(exclude = {org.apache.shardingsphere.shardingjdbc.spring.boot.SpringBootConfiguration.class})来排除。然后自定义配置类来装配DataSource
    1. @Configuration
    2. @Slf4j
    3. @EnableConfigurationProperties({
    4. SpringBootShardingRuleConfigurationProperties.class,
    5. SpringBootMasterSlaveRuleConfigurationProperties.class, SpringBootEncryptRuleConfigurationProperties.class, SpringBootPropertiesConfigurationProperties.class})
    6. @AutoConfigureBefore(DataSourceConfiguration.class)
    7. public class DataSourceConfig implements ApplicationContextAware {
    8. @Autowired
    9. private SpringBootShardingRuleConfigurationProperties shardingRule;
    10. @Autowired
    11. private SpringBootPropertiesConfigurationProperties props;
    12. private ApplicationContext applicationContext;
    13. @Bean("shardingDataSource")
    14. @Conditional(ShardingRuleCondition.class)
    15. public DataSource shardingDataSource() throws SQLException {
    16. // 获取其它方式配置的数据源
    17. Map<String, DruidDataSourceWrapper> beans = applicationContext.getBeansOfType(DruidDataSourceWrapper.class);
    18. Map<String, DataSource> dataSourceMap = new HashMap<>(4);
    19. beans.forEach(dataSourceMap::put);
    20. // 创建shardingDataSource
    21. return ShardingDataSourceFactory.createDataSource(dataSourceMap, new ShardingRuleConfigurationYamlSwapper().swap(shardingRule), props.getProps());
    22. }
    23. @Bean
    24. public SqlSessionFactory sqlSessionFactory() throws SQLException {
    25. SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
    26. // 将shardingDataSource设置到SqlSessionFactory中
    27. sqlSessionFactoryBean.setDataSource(shardingDataSource());
    28. // 其它设置
    29. return sqlSessionFactoryBean.getObject();
    30. }
    31. }

    分布式id生成器配置

    Sharding-JDBC提供了UUIDSNOWFLAKE生成器,还支持用户实现自定义id生成器。比如可以实现了type为SEQ的分布式id生成器,调用统一的分布式id服务获取id。
    1. @Data
    2. public class SeqShardingKeyGenerator implements ShardingKeyGenerator {
    3. private Properties properties = new Properties();
    4. @Override
    5. public String getType() {
    6. return "SEQ";
    7. }
    8. @Override
    9. public synchronized Comparable<?> generateKey() {
    10. // 获取分布式id逻辑
    11. }
    12. }
    由于扩展ShardingKeyGenerator是通过JDK的serviceloader的SPI机制实现的,因此还需要在resources/META-INF/services目录下配置org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator文件。 文件内容就是SeqShardingKeyGenerator类的全路径名。这样使用的时候,指定分布式主键生成器的type为SEQ就好了。
    至此,Sharding-JDBC就整合进spring-boot项目中了,后面就可以进行数据分片相关的配置了。

    数据分片实战

    如果项目初期就能预估出表的数据量级,当然可以一开始就按照这个预估值进行分库分表处理。但是大多数情况下,一开始并不能准备预估出数量级。这时候通常的做法是:
  1. 线上数据某张表查询性能开始下降,排查下来是因为数据量过大导致的。
  2. 根据历史数据量预估出未来的数据量级,并结合具体业务场景确定分库分表策略。
  3. 自动分库分表代码实现。

下面就以一个具体事例,阐述具体数据分片实战。比如有张表数据结构如下:

  1. CREATE TABLE `hc_question_reply_record` (
  2. `id` bigint NOT NULL AUTO_INCREMENT COMMENT '自增ID',
  3. `reply_text` varchar(500) NOT NULL DEFAULT '' COMMENT '回复内容',
  4. `reply_wheel_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '回复时间',
  5. `ctime` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  6. `mtime` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  7. PRIMARY KEY (`id`),
  8. INDEX `idx_reply_wheel_time` (`reply_wheel_time`)
  9. ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci
  10. COMMENT='回复明细记录';

分片方案确定

先查询目前目标表月新增趋势:

  1. SELECT count(*), date_format(ctime, '%Y-%m') AS `日期`
  2. FROM hc_question_reply_record
  3. GROUP BY date_format(ctime, '%Y-%m');

目前月新增在180w左右,预估未来达到300w(基本以2倍计算)以上。期望单表数据量不超过1000w,可使用reply_wheel_time作为分片键按季度归档。

分片配置

  1. spring:
  2. # sharing-jdbc配置
  3. shardingsphere:
  4. # 数据源名称
  5. datasource:
  6. names: defaultDataSource,slaveDataSource
  7. sharding:
  8. # 主从节点配置
  9. master-slave-rules:
  10. defaultDataSource:
  11. # maser数据源
  12. master-data-source-name: defaultDataSource
  13. # slave数据源
  14. slave-data-source-names: slaveDataSource
  15. tables:
  16. # hc_question_reply_record 分库分表配置
  17. hc_question_reply_record:
  18. # 真实数据节点 hc_question_reply_record_2020_q1
  19. actual-data-nodes: defaultDataSource.hc_question_reply_record_$->{2020..2025}_q$->{1..4}
  20. # 表分片策略
  21. table-strategy:
  22. standard:
  23. # 分片键
  24. sharding-column: reply_wheel_time
  25. # 精确分片算法 全路径名
  26. preciseAlgorithmClassName: com.xx.QuestionRecordPreciseShardingAlgorithm
  27. # 范围分片算法,用于BETWEEN,可选。。该类需实现RangeShardingAlgorithm接口并提供无参数的构造器
  28. rangeAlgorithmClassName: com.xx.QuestionRecordRangeShardingAlgorithm
  29. # 默认分布式id生成器
  30. default-key-generator:
  31. type: SEQ
  32. column: id

分片算法实现

  • 精确分片算法:QuestionRecordPreciseShardingAlgorithm

    1. public class QuestionRecordPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Date> {
    2. /**
    3. * Sharding.
    4. *
    5. * @param availableTargetNames available data sources or tables's names
    6. * @param shardingValue sharding value
    7. * @return sharding result for data source or table's name
    8. */
    9. @Override
    10. public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
    11. return ShardingUtils.quarterPreciseSharding(availableTargetNames, shardingValue);
    12. }
    13. }
  • 范围分片算法:QuestionRecordRangeShardingAlgorithm

    1. public class QuestionRecordRangeShardingAlgorithm implements RangeShardingAlgorithm<Date> {
    2. /**
    3. * Sharding.
    4. *
    5. * @param availableTargetNames available data sources or tables's names
    6. * @param shardingValue sharding value
    7. * @return sharding results for data sources or tables's names
    8. */
    9. @Override
    10. public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> shardingValue) {
    11. return ShardingUtils.quarterRangeSharding(availableTargetNames, shardingValue);
    12. }
    13. }
  • 具体分片实现逻辑:ShardingUtils

    1. @UtilityClass
    2. public class ShardingUtils {
    3. public static final String QUARTER_SHARDING_PATTERN = "%s_%d_q%d";
    4. /**
    5. * logicTableName_{year}_q{quarter}
    6. * 按季度范围分片
    7. * @param availableTargetNames 可用的真实表集合
    8. * @param shardingValue 分片值
    9. * @return
    10. */
    11. public Collection<String> quarterRangeSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> shardingValue) {
    12. // 这里就是根据范围查询条件,筛选出匹配的真实表集合
    13. }
    14. /**
    15. * logicTableName_{year}_q{quarter}
    16. * 按季度精确分片
    17. * @param availableTargetNames 可用的真实表集合
    18. * @param shardingValue 分片值
    19. * @return
    20. */
    21. public static String quarterPreciseSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
    22. // 这里就是根据等值查询条件,计算出匹配的真实表
    23. }
    24. }

    到这里,针对hc_question_reply_record表,使用reply_wheel_time作为分片键,按照季度分片的处理就完成了。还有一点要注意的就是,分库分表之后,查询的时候最好都带上分片键作为查询条件,否则就会使用全库路由,性能很低。 :::warning Sharing-JDBCmysql的全文索引支持的不是很好,项目有使用到的地方也要注意一下。 :::