问题
给你两棵二叉树的根节点 p
和 q
,编写一个函数来检验这两棵树是否相同
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的
示例 1:
输入:p = [1,2,3], q = [1,2,3]
输出:true
示例 2:
输入:p = [1,2], q = [1,null,2]
输出:false
示例 3:
输入:p = [1,2,1], q = [1,1,2]
输出:false
解法一:递归
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if (p == null && q == null) {
return true;
} else if (p == null || q == null) {
return false;
} else if (p.val != q.val) {
return false;
} else {
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
}
}
- 时间复杂度:
,其中
m
和n
分别是两个二叉树的节点数。对两个二叉树同时进行深度优先搜索,只有当两个二叉树中的对应节点都不为空时才会访问到该节点,因此被访问到的节点数不会超过较小的二叉树的节点数 - 空间复杂度:
,其中
m
和n
分别是两个二叉树的节点数。空间复杂度取决于递归调用的层数,递归调用的层数不会超过较小的二叉树的最大高度,最坏情况下,二叉树的高度等于节点数
解法二:广度优先搜索
首先判断两个二叉树是否为空,如果两个二叉树都不为空,则从两个二叉树的根节点开始广度优先搜索
- 使用两个队列分别存储两个二叉树的节点。初始时将两个二叉树的根节点分别加入两个队列。每次从两个队列各取出一个节点,进行如下比较操作
- 比较两个节点的值,如果两个节点的值不相同则两个二叉树一定不同;
- 如果两个节点的值相同,则判断两个节点的子节点是否为空,如果只有一个节点的左子节点为空,或者只有一个节点的右子节点为空,则两个二叉树的结构不同,因此两个二叉树一定不同;
- 如果两个节点的子节点的结构相同,则将两个节点的非空子节点分别加入两个队列,子节点加入队列时需要注意顺序,如果左右子节点都不为空,则先加入左子节点,后加入右子节点。
如果搜索结束时两个队列同时为空,则两个二叉树相同。如果只有一个队列为空,则两个二叉树的结构不同,因此两个二叉树不同
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if (p == null && q == null) {
return true;
} else if (p == null || q == null) {
return false;
}
Queue<TreeNode> queue1 = new LinkedList<TreeNode>();
Queue<TreeNode> queue2 = new LinkedList<TreeNode>();
queue1.offer(p);
queue2.offer(q);
while (!queue1.isEmpty() && !queue2.isEmpty()) {
TreeNode node1 = queue1.poll();
TreeNode node2 = queue2.poll();
if (node1.val != node2.val) {
return false;
}
if (node1.left == null ^ node2.left == null) {
return false;
}
if (node1.right == null ^ node2.right == null) {
return false;
}
if (node1.left != null) {
queue1.offer(node1.left);
}
if (node1.right != null) {
queue1.offer(node1.right);
}
if (node2.left != null) {
queue2.offer(node2.left);
}
if (node2.right != null) {
queue2.offer(node2.right);
}
}
return queue1.isEmpty() && queue2.isEmpty();
}
}