重学数据结构与算法 - 中科院博士、资深算法专家 - 拉勾教育

    然而在实际工作中还存在这样一类问题,它们满足前 3 个条件,唯独不满足第 4 个条件。那么这类问题我们该怎么解决呢?本课时,我们就来学习求解这类问题的动态规划算法,它是最常用的算法之一。

    那么,什么是多轮决策呢?其实多轮决策的每一轮都可以看作是一个子问题。从分治法的视角来看,每个子问题必须相互独立。但在多轮决策中,这个假设显然不成立。这也是动态规划方法产生的原因之一

    不难发现,我们需要求解的路线是由 A 到 G,这就意味着 A 要先到 B,再到 C,再到 D,再到 E,再到 F。每一轮都需要做不同的决策,而每次的决策又依赖上一轮决策的结果。

    例如,做 D2 -> E 的决策时,D2 -> E2 的距离为 1,最短。但这轮的决策,基于的假设是从 D2 出发,这就意味着前面一轮的决策结果是 D2。由此可见,相邻两轮的决策结果并不是独立的。

    动态规划还有一个重要概念叫作状态。在这个例子中,状态是个变量,而且受决策动作的影响。例如,第一轮决策的状态是 S1,可选的值是 A,第二轮决策的状态是 S2,可选的值就是 B1 和 B2。以此类推。

    动态规划问题之所以难,是因为动态规划的解题方法并没有那么标准化,它需要你因题而异,仔细分析问题并寻找解决方案。虽然动态规划问题没有标准化的解题方法,但它有一些宏观层面通用的方法论

    到这里,动态规划的概念和方法就讲完了。接下来,我们以最短路径问题再来看看动态规划的求解方法。在这个问题中,你可以采用最暴力的方法,那就是把所有的可能路径都遍历一遍,去看哪个结果的路径最短的。如果采用动态规划方法,那么我们按照方法论来执行。

    第一轮的状态 S1 = A,第二轮 S2 = {B1,B2},第三轮 S3 = {C1,C2,C3,C4},第四轮 S4 = {D1,D2,D3},第五轮 S5 = {E1,E2,E3},第六轮 S6 = {F1,F2},第七轮 S7 = {G}。

    决策变量就是上面图中的每条边。我们以第四轮决策 D -> E 为例来看,可以得到 u4(D1),u4(D2),u4(D3)。其中 u4(D1) 的可能结果是 E1 和 E2。

    别忘了,我们的目标是总距离最短。我们定义 d__k(s__k,u__k) 是在 sk 时,选择 uk 动作的距离。例如,_d_5(_E_1,_F_1) = 3。那么此时 n = 7,则有,

    好了,为了让大家清晰地看到结果,我们给出详细的计算过程。为了书写简单,我们把函数 Vk,7(s1\=A, s7\=G) 精简为 V7(G),含义为经过了 6 轮决策后,状态到达 G 后所使用的距离。我们把图片复制到这里一份,方便大家不用上下切换。

    接下来,我们尝试用代码来实现上面的计算过程。对于输入的图,可以采用一个 m x m 的二维数组来保存。在这个二维数组里,m 等于全部的结点数,也就是结点与结点的关系图。而数组每个元素的数值,定义为结点到结点需要的距离。

    1. public class testpath {
    2. public static int minPath1(int[][] matrix) {
    3. return process1(matrix, matrix[0].length-1);
    4. }
    5. public static int process1(int[][] matrix, int i) {
    6. if (i == 0) {
    7. return 0;
    8. }
    9. else{
    10. int distance = 999;
    11. for(int j=0; j<i; j++){
    12. if(matrix[j][i]!=0){
    13. int d_tmp = matrix[j][i] + process1(matrix, j);
    14. if (d_tmp < distance){
    15. distance = d_tmp;
    16. }
    17. }
    18. }
    19. return distance;
    20. }
    21. }
    22. public static void main(String[] args) {
    23. int[][] m = {{0,5,3,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,1,3,6,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,8,7,6,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,6,8,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,3,5,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,8,4,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,3,5,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3}};
    24. System.out.println(minPath1(m));
    25. }
    26. }

    然后调用函数 minPath1在第 2 到第 4 行,它的内部又调用了 process1(matrix, matrix[0].length-1)。在这里,matrix[0].length-1 的值是 15,表示的含义是 matrix 数组的第 16 列(G)是目的地。

    假设有且仅有 1 个最大公共子串。比如,输入 a = “13452439”, b = “123456”。由于字符串 “345” 同时在 a 和 b 中出现,且是同时出现在 a 和 b 中的最长子串。因此输出 “345”。

    动态规划领域有很多经典问题,本课时,我们讲述了最短路径的问题。需要明确的是,动态规划并不简单,动态规划的适用范围也没有那么广。如果你不是专门从事运筹优化领域的工作,对它不了解也很正常。如果在求职过程中,你求职的岗位与运筹优化关系不大,一般而言被考察到动态规划的可能性也是极低的。