- DataFrame对象进行索引
- DataFrame
- Constructor
- Attributes and underlying data属性与基础性数据
- Conversion 转换
- Indexing, iteration 索引,迭代
- Binary operator functions 二元运算符函数
- Function application, GroupBy & window
- 函数应用程序 分组和窗体
- Computations / descriptive stats 计算/描述性统计
- Reindexing / selection / label manipulation
- 重新编制索引/选择/标签操作
- Missing data handling 缺失数据处理
- Reshaping, sorting, transposing
- Combining / comparing / joining / merging
- Time Series-related 时间序列相关
- Metadata
- Plotting
- Sparse accessor
- Serialization / IO / conversion 序列化/IO/转换
DataFrame对象是一个由行列组成的表。DataFrame中行由columns组成,列由index组成,它们都是Index对象。它的值还是numpy数组。
import pandas as pddata = {'name':['ming', 'hong', 'gang', 'tian'], 'age':[12, 13, 14, 20], 'score':[80.3, 88.2, 90, 99.9]}df1 = pd.DataFrame(data,index=range(1,5))print(df1)
dateframe 包括行和列的标签
name age score
1 ming 12 80.3
2 hong 13 88.2
3 gang 14 90.0
4 tian 20 99.9
print(df1.index) # RangeIndex(start=1, stop=5, step=1)print(df1.columns) # Index(['name', 'age', 'score'], dtype='object')print(df1.values)
df1.values 不包括行和列标签
[[‘ming’ 12 80.3]
[‘hong’ 13 88.2]
[‘gang’ 14 90.0]
[‘tian’ 20 99.9]]
DataFrame对象进行索引
1:使用columns的值对列进行索引
直接使用columns中的值进行索引,得到的是一列或者是多列的值
print(df1['name'])
1 ming
2 hong
3 gang
4 tian
Name: name, dtype: object
print(df1[['name','age']])
name age
1 ming 12
2 hong 13
3 gang 14
4 tian 20
注意:不可以直接使用下标对列进行索引,除非该columns当中包含该值。如下面的操作是错误的
print(df1[0]) # 结果: 错误
2:切片或者布尔Series对行进行索引
使用切片索引,或者布尔类型Series进行索引:
print(df1[0:3])
name age score
1 ming 12 80.3
2 hong 13 88.2
3 gang 14 90.0
print(df1[ df1['age'] > 13 ])
name age score
3 gang 14 90.0
4 tian 20 99.9
3:使用loc和iloc进行索引
本质上loc是用index和columns当中的值进行索引,而iloc是不理会index和columns当中的值的,永远都是用从0开始的下标进行索引。所以当你搞懂这句话的时候,下面的索引就会变得非常简单:
print(df1.loc[3]) # 返回行索引为 3 的数据
name gang
age 14
score 90
Name: 3, dtype: object
print(df1.loc[:,'age']) # 返回列索引为age的数据
1 12
2 13
3 14
4 20
Name: age, dtype: int64
print(df1.iloc[3]) # iloc不理会index和columns中的值,从0开始的下标进行索引
name tian
age 20
score 99.9
Name: 4, dtype: object
print(df1.iloc[:,1]) # 返回列索引为 1 的数据
1 12
2 13
3 14
4 20
Name: age, dtype: int64
DataFrame
Constructor
DataFrame([data, index, columns, dtype, copy]) |
Two-dimensional, size-mutable, potentially heterogeneous tabular data. |
|---|---|
Attributes and underlying data属性与基础性数据
Axes
DataFrame.index |
DataFrame的行索引 RangeIndex(start=0, stop=3864, step=1) |
|---|---|
DataFrame.columns |
DataFrame 的列标签 Index([‘日期’, ‘股票代码’, ‘名称’, ‘收盘价’, ‘最高价’, ‘最低价’, ‘开盘价’, ‘前收盘’, ‘涨跌额’, ‘涨跌幅’, ‘换手率’, ‘成交量’, ‘成交金额’, ‘总市值’, ‘流通市值’], dtype=’object’) |
DataFrame.dtypes |
DataFrame每个列的数据类型 |
|---|---|
DataFrame.info([verbose, buf, max_cols, …]) |
Print a concise summary of a DataFrame. |
DataFrame.select_dtypes([include, exclude]) |
Return a subset of the DataFrame’s columns based on the column dtypes. |
DataFrame.values |
返回DataFrame值的数组表示 |
DataFrame.axes |
返回 DataFrame轴的列表表示 [RangeIndex(start=0, stop=3864, step=1), Index([‘日期’, ‘股票代码’, ‘名称’, ‘收盘价’, ‘最高价’, ‘最低价’, ‘开盘价’, ‘前收盘’, ‘涨跌额’, ‘涨跌幅’, ‘换手率’, ‘成交量’, ‘成交金额’, ‘总市值’, ‘流通市值’], dtype=’object’)] |
DataFrame.ndim |
Return an int representing the number of axes / array dimensions. |
DataFrame.size |
返回元素的数量57960 |
DataFrame.shape |
返回元组表示的DataFrame的形状,行,列数量 (3864, 15) |
DataFrame.memory_usage([index, deep]) |
返回每列数据的内存占用 |
DataFrame.empty |
指明Dataframe是否为空,布尔值 |
Conversion 转换
DataFrame.astype(dtype[, copy, errors]) |
将pandas对象强制转换为指定的数据类型 dtype. |
|---|---|
DataFrame.convert_dtypes([infer_objects, …]) |
使用支持的数据类型将列转换为最佳的数据类型 pd.NA. |
DataFrame.infer_objects() |
尝试为对象列推断更好的数据类型。 |
DataFrame.copy([deep]) |
复制此对象的索引和数据。 |
DataFrame.bool() |
返回单个元素系列或数据帧的布尔值。 |
Indexing, iteration 索引,迭代
DataFrame.head([n]) |
返回开头的n条数据,默认5条 |
|---|---|
DataFrame.at |
Access a single value for a row/column label pair. |
DataFrame.iat |
Access a single value for a row/column pair by integer position. |
DataFrame.loc |
Access a group of rows and columns by label(s) or a boolean array. |
DataFrame.iloc |
Purely integer-location based indexing for selection by position. |
DataFrame.insert(loc, column, value[, …]) |
Insert column into DataFrame at specified location. |
DataFrame.__iter__() |
Iterate over info axis. |
DataFrame.items() |
返回列名与 Series对的生成器对象 |
DataFrame.iteritems() |
Iterate over (column name, Series) pairs. |
DataFrame.keys() |
返回列名的列表 [‘日期’, ‘股票代码’, ‘名称’, ‘收盘价’, ‘最高价’, ‘最低价’, ‘开盘价’, ‘前收盘’, ‘涨跌额’, ‘涨跌幅’, ‘换手率’, ‘成交量’, ‘成交金额’, ‘总市值’, ‘流通市值’] |
DataFrame.iterrows() |
Iterate over DataFrame rows as (index, Series) pairs. |
DataFrame.itertuples([index, name]) |
Iterate over DataFrame rows as namedtuples. |
DataFrame.lookup(row_labels, col_labels) |
Label-based “fancy indexing” function for DataFrame. |
DataFrame.pop(item) |
Return item and drop from frame. |
DataFrame.tail([n]) |
返回最后的n条记录,默认5条 |
DataFrame.xs(key[, axis, level, drop_level]) |
Return cross-section from the Series/DataFrame. |
DataFrame.get(key[, default]) |
根据给定的key返回该列数据 |
DataFrame.isin(values) |
判定DataFrame中的每个元素是否包含给定的值,返回布尔值 |
DataFrame.where(cond[, other, inplace, …]) |
当条件为False时替换值. |
DataFrame.mask(cond[, other, inplace, axis, …]) |
Replace values where the condition is True. |
DataFrame.query(expr[, inplace]) |
根据一个布尔型的表达式查询DataFrame 的列 |
For more information on .at, .iat, .loc, and .iloc, see the indexing documentation.
Binary operator functions 二元运算符函数
DataFrame.add(other[, axis, level, fill_value]) |
Get Addition of dataframe and other, element-wise (binary operator add). |
|---|---|
DataFrame.sub(other[, axis, level, fill_value]) |
Get Subtraction of dataframe and other, element-wise (binary operator sub). |
DataFrame.mul(other[, axis, level, fill_value]) |
Get Multiplication of dataframe and other, element-wise (binary operator mul). |
DataFrame.div(other[, axis, level, fill_value]) |
Get Floating division of dataframe and other, element-wise (binary operator truediv). |
DataFrame.truediv(other[, axis, level, …]) |
Get Floating division of dataframe and other, element-wise (binary operator truediv). |
DataFrame.floordiv(other[, axis, level, …]) |
Get Integer division of dataframe and other, element-wise (binary operator floordiv). |
DataFrame.mod(other[, axis, level, fill_value]) |
Get Modulo of dataframe and other, element-wise (binary operator mod). |
DataFrame.pow(other[, axis, level, fill_value]) |
Get Exponential power of dataframe and other, element-wise (binary operator pow). |
DataFrame.dot(other) |
Compute the matrix multiplication between the DataFrame and other. |
DataFrame.radd(other[, axis, level, fill_value]) |
Get Addition of dataframe and other, element-wise (binary operator radd). |
DataFrame.rsub(other[, axis, level, fill_value]) |
Get Subtraction of dataframe and other, element-wise (binary operator rsub). |
DataFrame.rmul(other[, axis, level, fill_value]) |
Get Multiplication of dataframe and other, element-wise (binary operator rmul). |
DataFrame.rdiv(other[, axis, level, fill_value]) |
Get Floating division of dataframe and other, element-wise (binary operator rtruediv). |
DataFrame.rtruediv(other[, axis, level, …]) |
Get Floating division of dataframe and other, element-wise (binary operator rtruediv). |
DataFrame.rfloordiv(other[, axis, level, …]) |
Get Integer division of dataframe and other, element-wise (binary operator rfloordiv). |
DataFrame.rmod(other[, axis, level, fill_value]) |
Get Modulo of dataframe and other, element-wise (binary operator rmod). |
DataFrame.rpow(other[, axis, level, fill_value]) |
Get Exponential power of dataframe and other, element-wise (binary operator rpow). |
DataFrame.lt(other[, axis, level]) |
Get Less than of dataframe and other, element-wise (binary operator lt). |
DataFrame.gt(other[, axis, level]) |
Get Greater than of dataframe and other, element-wise (binary operator gt). |
DataFrame.le(other[, axis, level]) |
Get Less than or equal to of dataframe and other, element-wise (binary operator le). |
DataFrame.ge(other[, axis, level]) |
Get Greater than or equal to of dataframe and other, element-wise (binary operator ge). |
DataFrame.ne(other[, axis, level]) |
Get Not equal to of dataframe and other, element-wise (binary operator ne). |
DataFrame.eq(other[, axis, level]) |
Get Equal to of dataframe and other, element-wise (binary operator eq). |
DataFrame.combine(other, func[, fill_value, …]) |
Perform column-wise combine with another DataFrame. |
DataFrame.combine_first(other) |
Update null elements with value in the same location in other. |
Function application, GroupBy & window
函数应用程序 分组和窗体
DataFrame.apply(func[, axis, raw, …]) |
Apply a function along an axis of the DataFrame. |
|---|---|
DataFrame.applymap(func) |
Apply a function to a Dataframe elementwise. |
DataFrame.pipe(func, args, *kwargs) |
Apply func(self, args, *kwargs). |
DataFrame.agg([func, axis]) |
在指定轴上使用一个或多个操作进行聚合。 |
DataFrame.aggregate([func, axis]) |
Aggregate using one or more operations over the specified axis. |
DataFrame.transform(func[, axis]) |
Call func on self producing a DataFrame with transformed values. |
DataFrame.groupby([by, axis, level, …]) |
使用映射器或按一系列列对数据帧进行分组。 |
DataFrame.rolling(window[, min_periods, …]) |
Provide rolling window calculations. |
DataFrame.expanding([min_periods, center, axis]) |
Provide expanding transformations. |
DataFrame.ewm([com, span, halflife, alpha, …]) |
Provide exponential weighted (EW) functions. |
Computations / descriptive stats 计算/描述性统计
DataFrame.abs() |
返回一个带有每个元素绝对数值的序列/数据帧。 |
|---|---|
DataFrame.all([axis, bool_only, skipna, level]) |
返回是否所有元素都为真,可能在轴上。 |
DataFrame.any([axis, bool_only, skipna, level]) |
返回任何元素是否为真 |
DataFrame.clip([lower, upper, axis, inplace]) |
Trim values at input threshold(s). |
DataFrame.corr([method, min_periods]) |
Compute pairwise correlation of columns, excluding NA/null values. |
DataFrame.corrwith(other[, axis, drop, method]) |
Compute pairwise correlation. |
DataFrame.count([axis, level, numeric_only]) |
计算每列或每行的非NA单元格数。 |
DataFrame.cov([min_periods, ddof]) |
Compute pairwise covariance of columns, excluding NA/null values. |
DataFrame.cummax([axis, skipna]) |
返回数据帧或系列轴上的累积最大值。 |
DataFrame.cummin([axis, skipna]) |
返回数据帧或系列轴上的累积最小值。 |
DataFrame.cumprod([axis, skipna]) |
返回数据帧或系列轴上的累乘积。 |
DataFrame.cumsum([axis, skipna]) |
Return cumulative sum over a DataFrame or Series axis. |
DataFrame.describe([percentiles, include, …]) |
生成描述性统计。count、mean、std、min、max等 |
DataFrame.diff([periods, axis]) |
First discrete difference of element. |
DataFrame.eval(expr[, inplace]) |
Evaluate a string describing operations on DataFrame columns. |
DataFrame.kurt([axis, skipna, level, …]) |
Return unbiased kurtosis over requested axis. |
DataFrame.kurtosis([axis, skipna, level, …]) |
Return unbiased kurtosis over requested axis. |
DataFrame.mad([axis, skipna, level]) |
Return the mean absolute deviation of the values for the requested axis. |
DataFrame.max([axis, skipna, level, …]) |
返回请求轴的最大值。 |
DataFrame.mean([axis, skipna, level, …]) |
返回所请求轴的值的平均值。 |
DataFrame.median([axis, skipna, level, …]) |
返回所请求轴值的中位数值。 |
DataFrame.min([axis, skipna, level, …]) |
返回所请求轴的值的最小值。 |
DataFrame.mode([axis, numeric_only, dropna]) |
Get the mode(s) of each element along the selected axis. |
DataFrame.pct_change([periods, fill_method, …]) |
Percentage change between the current and a prior element. |
DataFrame.prod([axis, skipna, level, …]) |
Return the product of the values for the requested axis. |
DataFrame.product([axis, skipna, level, …]) |
Return the product of the values for the requested axis. |
DataFrame.quantile([q, axis, numeric_only, …]) |
Return values at the given quantile over requested axis. |
DataFrame.rank([axis, method, numeric_only, …]) |
Compute numerical data ranks (1 through n) along axis. |
DataFrame.round([decimals]) |
Round a DataFrame to a variable number of decimal places. |
DataFrame.sem([axis, skipna, level, ddof, …]) |
Return unbiased standard error of the mean over requested axis. |
DataFrame.skew([axis, skipna, level, …]) |
Return unbiased skew over requested axis. |
DataFrame.sum([axis, skipna, level, …]) |
返回所请求轴的值的总和。 |
DataFrame.std([axis, skipna, level, ddof, …]) |
请求返回的轴超出标准偏差。 |
DataFrame.var([axis, skipna, level, ddof, …]) |
Return unbiased variance over requested axis. |
DataFrame.nunique([axis, dropna]) |
Count distinct observations over requested axis. |
DataFrame.value_counts([subset, normalize, …]) |
Return a Series containing counts of unique rows in the DataFrame. |
Reindexing / selection / label manipulation
重新编制索引/选择/标签操作
DataFrame.add_prefix(prefix) |
Prefix labels with string prefix. |
|---|---|
DataFrame.add_suffix(suffix) |
Suffix labels with string suffix. |
DataFrame.align(other[, join, axis, level, …]) |
Align two objects on their axes with the specified join method. |
DataFrame.at_time(time[, asof, axis]) |
Select values at particular time of day (e.g., 9:30AM). |
DataFrame.between_time(start_time, end_time) |
Select values between particular times of the day (e.g., 9:00-9:30 AM). |
DataFrame.drop([labels, axis, index, …]) |
Drop specified labels from rows or columns. |
DataFrame.drop_duplicates([subset, keep, …]) |
Return DataFrame with duplicate rows removed. |
DataFrame.duplicated([subset, keep]) |
Return boolean Series denoting duplicate rows. |
DataFrame.equals(other) |
Test whether two objects contain the same elements. |
DataFrame.filter([items, like, regex, axis]) |
Subset the dataframe rows or columns according to the specified index labels. |
DataFrame.first(offset) |
Select initial periods of time series data based on a date offset. |
DataFrame.head([n]) |
Return the first n rows. |
DataFrame.idxmax([axis, skipna]) |
Return index of first occurrence of maximum over requested axis. |
DataFrame.idxmin([axis, skipna]) |
Return index of first occurrence of minimum over requested axis. |
DataFrame.last(offset) |
Select final periods of time series data based on a date offset. |
DataFrame.reindex(**kwargs) |
Conform Series/DataFrame to new index with optional filling logic. |
DataFrame.reindex_like(other[, method, …]) |
Return an object with matching indices as other object. |
DataFrame.rename(**kwargs) |
Alter axes labels. |
DataFrame.rename_axis(**kwargs) |
Set the name of the axis for the index or columns. |
DataFrame.reset_index([level, drop, …]) |
Reset the index, or a level of it. |
DataFrame.sample([n, frac, replace, …]) |
Return a random sample of items from an axis of object. |
DataFrame.set_axis(labels[, axis, inplace]) |
Assign desired index to given axis. |
DataFrame.set_index(keys[, drop, append, …]) |
Set the DataFrame index using existing columns. |
DataFrame.tail([n]) |
Return the last n rows. |
DataFrame.take(indices[, axis, is_copy]) |
Return the elements in the given positional indices along an axis. |
DataFrame.truncate([before, after, axis, copy]) |
Truncate a Series or DataFrame before and after some index value. |
Missing data handling 缺失数据处理
DataFrame.backfill([axis, inplace, limit, …]) |
Synonym for DataFrame.fillna() with method='bfill'. |
|---|---|
DataFrame.bfill([axis, inplace, limit, downcast]) |
Synonym for DataFrame.fillna() with method='bfill'. |
DataFrame.dropna([axis, how, thresh, …]) |
Remove missing values. |
DataFrame.ffill([axis, inplace, limit, downcast]) |
Synonym for DataFrame.fillna() with method='ffill'. |
DataFrame.fillna([value, method, axis, …]) |
Fill NA/NaN values using the specified method. |
DataFrame.interpolate([method, axis, limit, …]) |
Please note that only method='linear' is supported for DataFrame/Series with a MultiIndex. |
DataFrame.isna() |
Detect missing values. |
DataFrame.isnull() |
Detect missing values. |
DataFrame.notna() |
Detect existing (non-missing) values. |
DataFrame.notnull() |
Detect existing (non-missing) values. |
DataFrame.pad([axis, inplace, limit, downcast]) |
Synonym for DataFrame.fillna() with method='ffill'. |
DataFrame.replace([to_replace, value, …]) |
Replace values given in to_replace with value. |
Reshaping, sorting, transposing
DataFrame.droplevel(level[, axis]) |
Return DataFrame with requested index / column level(s) removed. |
|---|---|
DataFrame.pivot([index, columns, values]) |
Return reshaped DataFrame organized by given index / column values. |
DataFrame.pivot_table([values, index, …]) |
Create a spreadsheet-style pivot table as a DataFrame. |
DataFrame.reorder_levels(order[, axis]) |
Rearrange index levels using input order. |
DataFrame.sort_values(by[, axis, ascending, …]) |
Sort by the values along either axis. |
DataFrame.sort_index([axis, level, …]) |
Sort object by labels (along an axis). |
DataFrame.nlargest(n, columns[, keep]) |
Return the first n rows ordered by columns in descending order. |
DataFrame.nsmallest(n, columns[, keep]) |
Return the first n rows ordered by columns in ascending order. |
DataFrame.swaplevel([i, j, axis]) |
Swap levels i and j in a MultiIndex on a particular axis. |
DataFrame.stack([level, dropna]) |
Stack the prescribed level(s) from columns to index. |
DataFrame.unstack([level, fill_value]) |
Pivot a level of the (necessarily hierarchical) index labels. |
DataFrame.swapaxes(axis1, axis2[, copy]) |
Interchange axes and swap values axes appropriately. |
DataFrame.melt([id_vars, value_vars, …]) |
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. |
DataFrame.explode(column[, ignore_index]) |
Transform each element of a list-like to a row, replicating index values. |
DataFrame.squeeze([axis]) |
Squeeze 1 dimensional axis objects into scalars. |
DataFrame.to_xarray() |
Return an xarray object from the pandas object. |
DataFrame.T |
|
DataFrame.transpose(*args[, copy]) |
Transpose index and columns. |
Combining / comparing / joining / merging
合并/比较/加入/合并
DataFrame.append(other[, ignore_index, …]) |
Append rows of other to the end of caller, returning a new object. |
|---|---|
DataFrame.assign(**kwargs) |
Assign new columns to a DataFrame. |
DataFrame.compare(other[, align_axis, …]) |
Compare to another DataFrame and show the differences. |
DataFrame.join(other[, on, how, lsuffix, …]) |
Join columns of another DataFrame. |
DataFrame.merge(right[, how, on, left_on, …]) |
Merge DataFrame or named Series objects with a database-style join. |
DataFrame.update(other[, join, overwrite, …]) |
Modify in place using non-NA values from another DataFrame. |
Time Series-related 时间序列相关
DataFrame.asfreq(freq[, method, how, …]) |
Convert TimeSeries to specified frequency. |
|---|---|
DataFrame.asof(where[, subset]) |
Return the last row(s) without any NaNs before where. |
DataFrame.shift([periods, freq, axis, …]) |
Shift index by desired number of periods with an optional time freq. |
DataFrame.slice_shift([periods, axis]) |
Equivalent to shift without copying data. |
DataFrame.tshift([periods, freq, axis]) |
(DEPRECATED) Shift the time index, using the index’s frequency if available. |
DataFrame.first_valid_index() |
Return index for first non-NA/null value. |
DataFrame.last_valid_index() |
Return index for last non-NA/null value. |
DataFrame.resample(rule[, axis, closed, …]) |
Resample time-series data. |
DataFrame.to_period([freq, axis, copy]) |
Convert DataFrame from DatetimeIndex to PeriodIndex. |
DataFrame.to_timestamp([freq, how, axis, copy]) |
Cast to DatetimeIndex of timestamps, at beginning of period. |
DataFrame.tz_convert(tz[, axis, level, copy]) |
Convert tz-aware axis to target time zone. |
DataFrame.tz_localize(tz[, axis, level, …]) |
Localize tz-naive index of a Series or DataFrame to target time zone. |
Metadata
DataFrame.attrs is a dictionary for storing global metadata for this DataFrame.
WarningDataFrame.attrs is considered experimental and may change without warning.
DataFrame.attrs |
Dictionary of global attributes on this object. |
|---|---|
Plotting
DataFrame.plot is both a callable method and a namespace attribute for specific plotting methods of the form DataFrame.plot.<kind>.
DataFrame.plot([x, y, kind, ax, ….]) |
DataFrame plotting accessor and method |
|---|---|
DataFrame.plot.area([x, y]) |
Draw a stacked area plot. |
|---|---|
DataFrame.plot.bar([x, y]) |
Vertical bar plot. |
DataFrame.plot.barh([x, y]) |
Make a horizontal bar plot. |
DataFrame.plot.box([by]) |
Make a box plot of the DataFrame columns. |
DataFrame.plot.density([bw_method, ind]) |
Generate Kernel Density Estimate plot using Gaussian kernels. |
DataFrame.plot.hexbin(x, y[, C, …]) |
Generate a hexagonal binning plot. |
DataFrame.plot.hist([by, bins]) |
Draw one histogram of the DataFrame’s columns. |
DataFrame.plot.kde([bw_method, ind]) |
Generate Kernel Density Estimate plot using Gaussian kernels. |
DataFrame.plot.line([x, y]) |
Plot Series or DataFrame as lines. |
DataFrame.plot.pie(**kwargs) |
Generate a pie plot. |
DataFrame.plot.scatter(x, y[, s, c]) |
Create a scatter plot with varying marker point size and color. |
DataFrame.boxplot([column, by, ax, …]) |
Make a box plot from DataFrame columns. |
|---|---|
DataFrame.hist([column, by, grid, …]) |
Make a histogram of the DataFrame’s. |
Sparse accessor
Sparse-dtype specific methods and attributes are provided under the DataFrame.sparse accessor.
DataFrame.sparse.density |
Ratio of non-sparse points to total (dense) data points. |
|---|---|
DataFrame.sparse.from_spmatrix(data[, …]) |
Create a new DataFrame from a scipy sparse matrix. |
|---|---|
DataFrame.sparse.to_coo() |
Return the contents of the frame as a sparse SciPy COO matrix. |
DataFrame.sparse.to_dense() |
Convert a DataFrame with sparse values to dense. |
Serialization / IO / conversion 序列化/IO/转换
DataFrame.from_dict(data[, orient, dtype, …]) |
Construct DataFrame from dict of array-like or dicts. |
|---|---|
DataFrame.from_records(data[, index, …]) |
Convert structured or record ndarray to DataFrame. |
DataFrame.to_parquet(**kwargs) |
Write a DataFrame to the binary parquet format. |
DataFrame.to_pickle(path[, compression, …]) |
Pickle (serialize) object to file. |
DataFrame.to_csv([path_or_buf, sep, na_rep, …]) |
Write object to a comma-separated values (csv) file. |
DataFrame.to_hdf(path_or_buf, key[, mode, …]) |
Write the contained data to an HDF5 file using HDFStore. |
DataFrame.to_sql(name, con[, schema, …]) |
Write records stored in a DataFrame to a SQL database. |
DataFrame.to_dict([orient, into]) |
Convert the DataFrame to a dictionary. |
DataFrame.to_excel(excel_writer[, …]) |
Write object to an Excel sheet. |
DataFrame.to_json([path_or_buf, orient, …]) |
Convert the object to a JSON string. |
DataFrame.to_html([buf, columns, col_space, …]) |
Render a DataFrame as an HTML table. |
DataFrame.to_feather(**kwargs) |
Write a DataFrame to the binary Feather format. |
DataFrame.to_latex([buf, columns, …]) |
Render object to a LaTeX tabular, longtable, or nested table/tabular. |
DataFrame.to_stata(**kwargs) |
Export DataFrame object to Stata dta format. |
DataFrame.to_gbq(destination_table[, …]) |
Write a DataFrame to a Google BigQuery table. |
DataFrame.to_records([index, column_dtypes, …]) |
Convert DataFrame to a NumPy record array. |
DataFrame.to_string([buf, columns, …]) |
Render a DataFrame to a console-friendly tabular output. |
DataFrame.to_clipboard([excel, sep]) |
Copy object to the system clipboard. |
DataFrame.to_markdown([buf, mode, index]) |
Print DataFrame in Markdown-friendly format. |
DataFrame.style |
Returns a Styler object. |
