什么是时间晶体

时间晶体是一种神秘的物质。理论上,它可以在不同状态之间进行重复的循环运动,而永远不会消耗能量,就像一只手表在没有电池的情况下永远运行一样。时间晶体就像是一个「永动机」在不同状态之间永久循环往复而不消耗任何能量

平衡状态的液体或气体是由均匀分布的粒子构成的,呈现出完美的空间对称性——它们看起来每个地方,每个方向上都一样。在能量极低位置时,大多数物质不能保持对称性,而会结晶。晶体的规则几何形状缺少完整的空间对称性:结构不会处处相同。因为晶体在能量非常低的时候对称性减少了。此时,物理学家会说,这些晶体出现自发对称性破坏。

时间晶体能自发打破被 Wilczek 称为「对称性之母」的时间平移对称性,它可以随着时间改变,但是会持续回到开始时的相同形态,如同钟表的指针周期性地回到原始位置。

与钟表或者其他周期性的过程不同的是,时间水晶和空间水晶一样是最低限度能量的一种状态。这似乎是一个矛盾——时间水晶根据定义为破坏时间平移对称性,必须随着时间改变。但是拥有最低能量的体系通常不能运动。如果它可以动,那么就有额外能量输出,直到这个体系达到真正的最低能量即静止状态。

历史研究

在博士研究生期间,Khemani 和她当时还在普林斯顿大学的博士生导师 Shivaji Sondhi,以及马克斯 · 普朗克复杂系统物理研究所的 Achilleas Lazarides 和 Roderich Moessner 无意中发现了这种制造时间晶体的方法。当时他们正在研究非平衡多体局域系统——粒子在它们开始的状态下会「卡住」并且永远不能转换至平衡状态的系统。

他们试图探索物相在被激光定期击中时可能会发展的情况。出乎预料的是,他们不仅设法找到了稳定的非平衡相,而且还发现粒子的自旋在永远重复的模式之间翻转,其周期是激光驱动周期的两倍,从而形成了时间晶体。

激光的周期性冲击为晶体的动态建立了特定节奏。通常,旋转的「舞蹈」应该与这种节奏同步,但在时间晶体中则不然。与之相反的是,自旋在两种状态之间翻转,只有在被激光击中两次后才能完成一个循环。这意味着系统的「时间平移对称性」被打破。

对称性在物理学中扮演着重要的角色,它经常被打破——这是解释规则晶体、磁铁和许多其他现象的基础。然而时间平移对称性与其他对称性不同,它不能在平衡状态下被打破。周期性的冲击是一个漏洞,让时间晶体成为可能。

振荡周期的倍增是不寻常的,但也并非前所未有。长期的振荡在量子动力学的少粒子系统中也很常见。时间晶体的独特之处在于,它是一个由数以百万计的粒子组成的系统,却在没有任何能量进入或泄漏的情况下,具有同样的表现。

「这是物质的一个完全稳定的阶段,你不能微调参数或状态,但你的系统仍然是量子的,」Sondhi 说,他是牛津大学的物理学教授,也是这篇论文的合著者。「没有能量的供给,没有能量的消耗,它会永远持续下去,包括许多强烈相互作用的粒子。」

虽然这听起来可能有点像「永动机」,但仔细观察就会发现,时间晶体并没有打破任何物理定律。熵——系统无序程度的一种度量——会随着时间的推移保持稳定,它不会减少并边际上满足热力学第二定律。

在时间晶体计划的开发和量子计算机实验的实现之间,许多不同团队的研究人员实现了各种近似于时间晶体的里程碑的成果。然而,提供「多体定位」(使时间晶体具有无限稳定性的现象) 配方中的所有成分仍然是一个突出的挑战。

对于 Khemani 和合作者来说,在时间水晶研究上取得成功的最后一步是与谷歌量子人工智能团队合作。这个小组共同使用谷歌的 Sycamore 量子计算硬件,利用经典计算机的量子比特编程 20 个「自旋」。

11 月,《Science》刊登了另一篇关于时间晶体的文章,揭示了目前人们对时间晶体的强烈兴趣。这种晶体是荷兰代尔夫特理工大学的研究人员利用钻石内部的量子比特制造出来的

量子计算机与时间晶体

「我们设法利用量子计算机的多功能性来帮助我们分析它自身的局限性,」论文的合著者之一、马普所复杂系统物理研究所主任 Moessner 说。「它实质上告诉了我们如何纠正自身的错误,以便从有限时间的观测中确定理想时间结晶表现的机制。」

理想的时间晶体的一个关键特征是,它在所有状态下都会表现出无限的振荡。验证这种对于状态选择的稳健性是实验的关键挑战,研究人员设计了一个协议,在机器的一次运行中探测超过 100 万个状态的时间晶体,只需要几毫秒的运行时间。这就像从多个角度观察一个物理晶体以验证它的重复结构。

「我们量子处理器的一个独特之处在于它能够创造出高度复杂的量子态,」谷歌研究员、论文的第一作者之一 Xiao Mi 说。「这些状态能让物质的相位结构被有效地验证,而无需调查整个计算空间,这原本是一个难以处理的任务。」

在基础水平上创造物质的新阶段无疑是令人兴奋的。此外,事实表明量子计算机在计算之外的应用方面越来越可用。「有了更多的量子比特,我们的方法可以成为研究非平衡态动力学的主要方法,」谷歌研究员、论文作者之一 Pedram Roushan 说。

「我们认为目前量子计算机最令人兴奋的用途是作为基础量子物理学的平台,」Ipppoliti 说。「凭借这些系统的独特性能,有希望发现一些你没有预料到的新现象。」

量子计算机是实现时间晶体的首选平台,因为它们有精确校准的量子逻辑门。

量子逻辑门是传统计算机逻辑门的量子计算版本,其允许以非常高的精度实现时间晶体所需的多体相互作用。量子逻辑门是传统计算机逻辑门的量子计算版本,其允许以非常高的精度实现时间晶体所需的多体相互作用。

研究意义

拥有像时间晶体这样稳定的抗实验干扰的物质,有助于设计长寿的量子态,这是未来改进量子处理器的关键任务。

在量子计算机中构建了这种全新的物相。这可能是近几十年来最为重大的一次物理发现。

时间晶体就像铁磁体或超导体一样,是对称性自发破缺或自发有序的例子。

例如,铁磁体本质上是一个由微小的磁体组成的系统,这些磁体的磁极都指向一个方向,所以从这个意义上讲,它是有序的。

而对称性在这种状态下被「自发」地打破了,因为在正常物质中,组成粒子的极点都指向随机的方向,这便是对称性自发破缺。

对称性自发破缺一旦进入一个稳态,如铁磁体或超导体的电阻消失,通常都具有重要的技术价值。

参考

谷歌时间晶体登上Nature,诺奖得主重大猜想成为现实 (qq.com)

谷歌华人用时间晶体解开数十年尘封谜题!永「动」机再登Nature (qq.com)