题目

解题思路
二分查找
对于有序数组,可以使用二分查找的方法查找元素。
但是这道题中,数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,但是依旧可以进行二分查找。可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。
对于[4,5,6,7,0,1,2]这个例子,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。
这启示我们可以在常规二分查找的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:
- 如果 [l, mid - 1] 是有序数组,且 target 的大小满足[nums[l],nums[mid]),则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。
- 如果 [mid, r] 是有序数组,且 target 的大小满足 (\textit{nums}[mid+1],\textit{nums}[r]](nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。
需要注意的是,二分的写法有很多种,所以在判断 target 大小与有序部分的关系的时候可能会出现细节上的差别。
代码
class Solution {public int search(int[] nums, int target) {int n = nums.length;if (n == 0) {return -1;}if (n == 1) {return nums[0] == target ? 0 : -1;}int l = 0, r = n - 1;while (l <= r) {int mid = (l + r) / 2;if (nums[mid] == target) {return mid;}if (nums[0] <= nums[mid]) {if (nums[0] <= target && target < nums[mid]) {r = mid - 1;} else {l = mid + 1;}} else {if (nums[mid] < target && target <= nums[n - 1]) {l = mid + 1;} else {r = mid - 1;}}}return -1;}}
