题目
类型:动态规划
解题思路
这道题目其实是最长递增子序列的一个变种,因为每次合法的嵌套是大的套小的,相当于在二维平面中找一个最长递增的子序列,其长度就是最多能嵌套的信封个数。
前面说的标准 LIS 算法只能在一维数组中寻找最长子序列,而我们的信封是由 (w, h) 这样的二维数对形式表示的,如何把 LIS 算法运用过来呢?
读者也许会想,通过 w × h 计算面积,然后对面积进行标准的 LIS 算法。但是稍加思考就会发现这样不行,比如 1 × 10 大于 3 × 3,但是显然这样的两个信封是无法互相嵌套的。
这道题的解法比较巧妙:
先对宽度 w 进行升序排序,如果遇到 w 相同的情况,则按照高度 h 降序排序;之后把所有的 h 作为一个数组,在这个数组上计算 LIS 的长度就是答案。
画个图理解一下,先对这些数对进行排序:
然后在 h 上寻找最长递增子序列,这个子序列就是最优的嵌套方案:
为什么呢?稍微思考一下就明白了:
首先,对宽度 w 从小到大排序,确保了 w 这个维度可以互相嵌套,所以我们只需要专注高度 h 这个维度能够互相嵌套即可。
其次,两个 w 相同的信封不能相互包含,所以对于宽度 w 相同的信封,对高度 h 进行降序排序,保证 LIS 中不存在多个 w 相同的信封(因为题目说了长宽相同也无法嵌套)。
代码
public class RussianDollEnvelopes {
/**
* envelopes = [[w, h], [w, h]...]
*/
public int maxEnvelopes(int[][] envelopes) {
int n = envelopes.length;
// 按宽度升序排列,如果宽度一样,则按高度降序排列
Arrays.sort(envelopes, new Comparator<int[]>() {
@Override
public int compare(int[] a, int[] b) {
return a[0] == b[0] ?
b[1] - a[1] : a[0] - b[0];
}
});
// 对高度数组寻找 LIS
int[] height = new int[n];
for (int i = 0; i < n; i++) {
height[i] = envelopes[i][1];
}
return lengthOfLIS(height);
}
int lengthOfLIS(int[] nums) {
int len = nums.length;
if (len <= 1) {
return len;
}
// tail 数组的定义:长度为 i + 1 的上升子序列的末尾最小是几
int[] tail = new int[len];
// 遍历第 1 个数,直接放在有序数组 tail 的开头
tail[0] = nums[0];
// end 表示有序数组 tail 的最后一个已经赋值元素的索引
int end = 0;
for (int i = 1; i < len; i++) {
int left = 0;
// 这里,因为当前遍历的数,有可能比有序数组 tail 数组实际有效的末尾的那个元素还大
// 【逻辑 1】因此 end + 1 应该落在候选区间里
int right = end + 1;
while (left < right) {
// 选左中位数不是偶然,而是有原因的,原因请见 LeetCode 第 35 题题解
// int mid = left + (right - left) / 2;
int mid = (left + right) >>> 1;
if (tail[mid] < nums[i]) {
// 中位数肯定不是要找的数,把它写在分支的前面
left = mid + 1;
} else {
right = mid;
}
}
// 因为 【逻辑 1】,因此一定能找到第 1 个大于等于 nums[i] 的元素
// 因此,无需再单独判断,直接更新即可
tail[left] = nums[i];
// 但是 end 的值,需要更新,当前仅当更新位置在当前 end 的下一位
if (left == end + 1) {
end++;
}
}
// 此时 end 是有序数组 tail 最后一个元素的索引
// 题目要求返回的是长度,因此 +1 后返回
end++;
return end;
}
}