题目
类型:排序
解题思路
核心思路:
按照区间的左端点排序,在排完序的列表中,可以合并的区间一定是连续的。如下图所示,标记为蓝色、黄色和绿色的区间分别可以合并成一个大区间,它们在排完序的列表中是连续的:
算法的步骤:
1、用数组 merged
存储最终的答案。
2、将列表中的区间按照左端点升序排序。然后将第一个区间加入 merged 数组中,并按顺序依次考虑之后的每个区间:
- 如果当前区间的左端点在数组 merged 中最后一个区间的右端点之后,那么它们不会重合,可以直接将这个区间加入数组 merged 的末尾;
- 否则,它们重合,需要用当前区间的右端点更新数组 merged 中最后一个区间的右端点,将其置为二者的较大值。
代码
class Solution {
public int[][] merge(int[][] intervals) {
if (intervals.length == 0) {
return new int[0][2];
}
Arrays.sort(intervals, new Comparator<int[]>() {
public int compare(int[] interval1, int[] interval2) {
return interval1[0] - interval2[0];
}
});
List<int[]> merged = new ArrayList<int[]>();
for (int i = 0; i < intervals.length; ++i) {
int L = intervals[i][0], R = intervals[i][1];
if (merged.size() == 0 || merged.get(merged.size() - 1)[1] < L) {
merged.add(new int[]{L, R});
} else {
merged.get(merged.size() - 1)[1] = Math.max(merged.get(merged.size() - 1)[1], R);
}
}
return merged.toArray(new int[merged.size()][]);
}
}