原文: https://www.programiz.com/dsa/b-plus-tree

在本教程中,您将学习什么是 B+ 树。 此外,您还将找到在 C,C++ ,Java 和 Python 中对 B+ 树进行搜索操作的工作示例。

B+ 树是自平衡树的高级形式,其中所有值都存在于叶级别中。

学习 B+ 树之前要理解的重要概念是多级索引。 在多级索引中,索引索引如下图所示创建。 它使访问数据更容易,更快捷。

B  树 - 图1

使用 B+ 树进行多级索引


B+ 树的属性

  1. 所有叶子处于同一级别。
  2. 根至少有两个子级。
  3. 除根节点外,每个节点最多可以包含m个子级,并且至少具有m / 2个子级。
  4. 每个节点最多可以包含m -1键,以及最小⌈m/2⌉ -1键。

B 树和 B+ 树之间的比较

B  树 - 图2

B 树

B  树 - 图3

B+ 树

数据指针仅出现在 B+ 树的叶子节点上,而数据指针则出现在 B 树的内部,叶子或根节点上。

叶子在 B 树上不相互连接,而在 B+ 树上连接。

B+ 树上的操作比 B 树上的操作快。


B+ 树上的搜索

遵循以下步骤以在顺序为m的 B+ 树中搜索数据。 令要搜索的数据为k

  1. 从根节点开始。 比较k与根节点[k1, k2, k3, ... k(m-1)]上的键。
  2. 如果k < k1,请转到根节点的左子节点。
  3. 否则,如果k == k1,则比较k2。 如果k < k2,则k位于k1k2之间。 因此,搜索k2的左子级。
  4. 如果k > k2,则按照步骤 2 和步骤 6 中的k3,k4,... k(m-1)进行操作。
  5. 重复上述步骤,直到到达叶节点。
  6. 如果k在叶节点中存在,则返回true,否则返回false

B+ 树上的搜索示例

让我们在以下 B+ 树上搜索k = 45

B  树 - 图4

B+ 树

  1. k与根节点进行比较。
    B  树 - 图5
    在根下找不到

  2. 由于k > 25,请找到合适的子级。
    B  树 - 图6
    移至根的右侧

  3. 比较k与 35。由于k > 30,将k与 45 比较。
    B  树 - 图7
    未找到k

  4. 由于k≥45,因此请找到合适的子级。
    B  树 - 图8
    移至右侧

  5. 找到了k
    B  树 - 图9


Python,Java 和 C/C++ 示例

  1. # B+ tee in python
  2. import math
  3. # Node creation
  4. class Node:
  5. def __init__(self, order):
  6. self.order = order
  7. self.values = []
  8. self.keys = []
  9. self.nextKey = None
  10. self.parent = None
  11. self.check_leaf = False
  12. # Insert at the leaf
  13. def insert_at_leaf(self, leaf, value, key):
  14. if (self.values):
  15. temp1 = self.values
  16. for i in range(len(temp1)):
  17. if (value == temp1[i]):
  18. self.keys[i].append(key)
  19. break
  20. elif (value < temp1[i]):
  21. self.values = self.values[:i] + [value] + self.values[i:]
  22. self.keys = self.keys[:i] + [[key]] + self.keys[i:]
  23. break
  24. elif (i + 1 == len(temp1)):
  25. self.values.append(value)
  26. self.keys.append([key])
  27. break
  28. else:
  29. self.values = [value]
  30. self.keys = [[key]]
  31. # B plus tree
  32. class BplusTree:
  33. def __init__(self, order):
  34. self.root = Node(order)
  35. self.root.check_leaf = True
  36. # Insert operation
  37. def insert(self, value, key):
  38. value = str(value)
  39. old_node = self.search(value)
  40. old_node.insert_at_leaf(old_node, value, key)
  41. if (len(old_node.values) == old_node.order):
  42. node1 = Node(old_node.order)
  43. node1.check_leaf = True
  44. node1.parent = old_node.parent
  45. mid = int(math.ceil(old_node.order / 2)) - 1
  46. node1.values = old_node.values[mid + 1:]
  47. node1.keys = old_node.keys[mid + 1:]
  48. node1.nextKey = old_node.nextKey
  49. old_node.values = old_node.values[:mid + 1]
  50. old_node.keys = old_node.keys[:mid + 1]
  51. old_node.nextKey = node1
  52. self.insert_in_parent(old_node, node1.values[0], node1)
  53. # Search operation for different operations
  54. def search(self, value):
  55. current_node = self.root
  56. while(current_node.check_leaf == False):
  57. temp2 = current_node.values
  58. for i in range(len(temp2)):
  59. if (value == temp2[i]):
  60. current_node = current_node.keys[i + 1]
  61. break
  62. elif (value < temp2[i]):
  63. current_node = current_node.keys[i]
  64. break
  65. elif (i + 1 == len(current_node.values)):
  66. current_node = current_node.keys[i + 1]
  67. break
  68. return current_node
  69. # Find the node
  70. def find(self, value, key):
  71. l = self.search(value)
  72. for i, item in enumerate(l.values):
  73. if item == value:
  74. if key in l.keys[i]:
  75. return True
  76. else:
  77. return False
  78. return False
  79. # Inserting at the parent
  80. def insert_in_parent(self, n, value, ndash):
  81. if (self.root == n):
  82. rootNode = Node(n.order)
  83. rootNode.values = [value]
  84. rootNode.keys = [n, ndash]
  85. self.root = rootNode
  86. n.parent = rootNode
  87. ndash.parent = rootNode
  88. return
  89. parentNode = n.parent
  90. temp3 = parentNode.keys
  91. for i in range(len(temp3)):
  92. if (temp3[i] == n):
  93. parentNode.values = parentNode.values[:i] + \
  94. [value] + parentNode.values[i:]
  95. parentNode.keys = parentNode.keys[:i +
  96. 1] + [ndash] + parentNode.keys[i + 1:]
  97. if (len(parentNode.keys) > parentNode.order):
  98. parentdash = Node(parentNode.order)
  99. parentdash.parent = parentNode.parent
  100. mid = int(math.ceil(parentNode.order / 2)) - 1
  101. parentdash.values = parentNode.values[mid + 1:]
  102. parentdash.keys = parentNode.keys[mid + 1:]
  103. value_ = parentNode.values[mid]
  104. if (mid == 0):
  105. parentNode.values = parentNode.values[:mid + 1]
  106. else:
  107. parentNode.values = parentNode.values[:mid]
  108. parentNode.keys = parentNode.keys[:mid + 1]
  109. for j in parentNode.keys:
  110. j.parent = parentNode
  111. for j in parentdash.keys:
  112. j.parent = parentdash
  113. self.insert_in_parent(parentNode, value_, parentdash)
  114. # Delete a node
  115. def delete(self, value, key):
  116. node_ = self.search(value)
  117. temp = 0
  118. for i, item in enumerate(node_.values):
  119. if item == value:
  120. temp = 1
  121. if key in node_.keys[i]:
  122. if len(node_.keys[i]) > 1:
  123. node_.keys[i].pop(node_.keys[i].index(key))
  124. elif node_ == self.root:
  125. node_.values.pop(i)
  126. node_.keys.pop(i)
  127. else:
  128. node_.keys[i].pop(node_.keys[i].index(key))
  129. del node_.keys[i]
  130. node_.values.pop(node_.values.index(value))
  131. self.deleteEntry(node_, value, key)
  132. else:
  133. print("Value not in Key")
  134. return
  135. if temp == 0:
  136. print("Value not in Tree")
  137. return
  138. # Delete an entry
  139. def deleteEntry(self, node_, value, key):
  140. if not node_.check_leaf:
  141. for i, item in enumerate(node_.keys):
  142. if item == key:
  143. node_.keys.pop(i)
  144. break
  145. for i, item in enumerate(node_.values):
  146. if item == value:
  147. node_.values.pop(i)
  148. break
  149. if self.root == node_ and len(node_.keys) == 1:
  150. self.root = node_.keys[0]
  151. node_.keys[0].parent = None
  152. del node_
  153. return
  154. elif (len(node_.keys) < int(math.ceil(node_.order / 2)) and node_.check_leaf == False) or (len(node_.values) < int(math.ceil((node_.order - 1) / 2)) and node_.check_leaf == True):
  155. is_predecessor = 0
  156. parentNode = node_.parent
  157. PrevNode = -1
  158. NextNode = -1
  159. PrevK = -1
  160. PostK = -1
  161. for i, item in enumerate(parentNode.keys):
  162. if item == node_:
  163. if i > 0:
  164. PrevNode = parentNode.keys[i - 1]
  165. PrevK = parentNode.values[i - 1]
  166. if i < len(parentNode.keys) - 1:
  167. NextNode = parentNode.keys[i + 1]
  168. PostK = parentNode.values[i]
  169. if PrevNode == -1:
  170. ndash = NextNode
  171. value_ = PostK
  172. elif NextNode == -1:
  173. is_predecessor = 1
  174. ndash = PrevNode
  175. value_ = PrevK
  176. else:
  177. if len(node_.values) + len(NextNode.values) < node_.order:
  178. ndash = NextNode
  179. value_ = PostK
  180. else:
  181. is_predecessor = 1
  182. ndash = PrevNode
  183. value_ = PrevK
  184. if len(node_.values) + len(ndash.values) < node_.order:
  185. if is_predecessor == 0:
  186. node_, ndash = ndash, node_
  187. ndash.keys += node_.keys
  188. if not node_.check_leaf:
  189. ndash.values.append(value_)
  190. else:
  191. ndash.nextKey = node_.nextKey
  192. ndash.values += node_.values
  193. if not ndash.check_leaf:
  194. for j in ndash.keys:
  195. j.parent = ndash
  196. self.deleteEntry(node_.parent, value_, node_)
  197. del node_
  198. else:
  199. if is_predecessor == 1:
  200. if not node_.check_leaf:
  201. ndashpm = ndash.keys.pop(-1)
  202. ndashkm_1 = ndash.values.pop(-1)
  203. node_.keys = [ndashpm] + node_.keys
  204. node_.values = [value_] + node_.values
  205. parentNode = node_.parent
  206. for i, item in enumerate(parentNode.values):
  207. if item == value_:
  208. p.values[i] = ndashkm_1
  209. break
  210. else:
  211. ndashpm = ndash.keys.pop(-1)
  212. ndashkm = ndash.values.pop(-1)
  213. node_.keys = [ndashpm] + node_.keys
  214. node_.values = [ndashkm] + node_.values
  215. parentNode = node_.parent
  216. for i, item in enumerate(p.values):
  217. if item == value_:
  218. parentNode.values[i] = ndashkm
  219. break
  220. else:
  221. if not node_.check_leaf:
  222. ndashp0 = ndash.keys.pop(0)
  223. ndashk0 = ndash.values.pop(0)
  224. node_.keys = node_.keys + [ndashp0]
  225. node_.values = node_.values + [value_]
  226. parentNode = node_.parent
  227. for i, item in enumerate(parentNode.values):
  228. if item == value_:
  229. parentNode.values[i] = ndashk0
  230. break
  231. else:
  232. ndashp0 = ndash.keys.pop(0)
  233. ndashk0 = ndash.values.pop(0)
  234. node_.keys = node_.keys + [ndashp0]
  235. node_.values = node_.values + [ndashk0]
  236. parentNode = node_.parent
  237. for i, item in enumerate(parentNode.values):
  238. if item == value_:
  239. parentNode.values[i] = ndash.values[0]
  240. break
  241. if not ndash.check_leaf:
  242. for j in ndash.keys:
  243. j.parent = ndash
  244. if not node_.check_leaf:
  245. for j in node_.keys:
  246. j.parent = node_
  247. if not parentNode.check_leaf:
  248. for j in parentNode.keys:
  249. j.parent = parentNode
  250. # Print the tree
  251. def printTree(tree):
  252. lst = [tree.root]
  253. level = [0]
  254. leaf = None
  255. flag = 0
  256. lev_leaf = 0
  257. node1 = Node(str(level[0]) + str(tree.root.values))
  258. while (len(lst) != 0):
  259. x = lst.pop(0)
  260. lev = level.pop(0)
  261. if (x.check_leaf == False):
  262. for i, item in enumerate(x.keys):
  263. print(item.values)
  264. else:
  265. for i, item in enumerate(x.keys):
  266. print(item.values)
  267. if (flag == 0):
  268. lev_leaf = lev
  269. leaf = x
  270. flag = 1
  271. record_len = 3
  272. bplustree = BplusTree(record_len)
  273. bplustree.insert('5', '33')
  274. bplustree.insert('15', '21')
  275. bplustree.insert('25', '31')
  276. bplustree.insert('35', '41')
  277. bplustree.insert('45', '10')
  278. printTree(bplustree)
  279. if(bplustree.find('5', '34')):
  280. print("Found")
  281. else:
  282. print("Not found")
  1. // Searching on a B+ tree in Java
  2. import java.util.*;
  3. public class BPlusTree {
  4. int m;
  5. InternalNode root;
  6. LeafNode firstLeaf;
  7. // Binary search program
  8. private int binarySearch(DictionaryPair[] dps, int numPairs, int t) {
  9. Comparator<DictionaryPair> c = new Comparator<DictionaryPair>() {
  10. @Override
  11. public int compare(DictionaryPair o1, DictionaryPair o2) {
  12. Integer a = Integer.valueOf(o1.key);
  13. Integer b = Integer.valueOf(o2.key);
  14. return a.compareTo(b);
  15. }
  16. };
  17. return Arrays.binarySearch(dps, 0, numPairs, new DictionaryPair(t, 0), c);
  18. }
  19. // Find the leaf node
  20. private LeafNode findLeafNode(int key) {
  21. Integer[] keys = this.root.keys;
  22. int i;
  23. for (i = 0; i < this.root.degree - 1; i++) {
  24. if (key < keys[i]) {
  25. break;
  26. }
  27. }
  28. Node child = this.root.childPointers[i];
  29. if (child instanceof LeafNode) {
  30. return (LeafNode) child;
  31. } else {
  32. return findLeafNode((InternalNode) child, key);
  33. }
  34. }
  35. // Find the leaf node
  36. private LeafNode findLeafNode(InternalNode node, int key) {
  37. Integer[] keys = node.keys;
  38. int i;
  39. for (i = 0; i < node.degree - 1; i++) {
  40. if (key < keys[i]) {
  41. break;
  42. }
  43. }
  44. Node childNode = node.childPointers[i];
  45. if (childNode instanceof LeafNode) {
  46. return (LeafNode) childNode;
  47. } else {
  48. return findLeafNode((InternalNode) node.childPointers[i], key);
  49. }
  50. }
  51. // Finding the index of the pointer
  52. private int findIndexOfPointer(Node[] pointers, LeafNode node) {
  53. int i;
  54. for (i = 0; i < pointers.length; i++) {
  55. if (pointers[i] == node) {
  56. break;
  57. }
  58. }
  59. return i;
  60. }
  61. // Get the mid point
  62. private int getMidpoint() {
  63. return (int) Math.ceil((this.m + 1) / 2.0) - 1;
  64. }
  65. // Balance the tree
  66. private void handleDeficiency(InternalNode in) {
  67. InternalNode sibling;
  68. InternalNode parent = in.parent;
  69. if (this.root == in) {
  70. for (int i = 0; i < in.childPointers.length; i++) {
  71. if (in.childPointers[i] != null) {
  72. if (in.childPointers[i] instanceof InternalNode) {
  73. this.root = (InternalNode) in.childPointers[i];
  74. this.root.parent = null;
  75. } else if (in.childPointers[i] instanceof LeafNode) {
  76. this.root = null;
  77. }
  78. }
  79. }
  80. }
  81. else if (in.leftSibling != null && in.leftSibling.isLendable()) {
  82. sibling = in.leftSibling;
  83. } else if (in.rightSibling != null && in.rightSibling.isLendable()) {
  84. sibling = in.rightSibling;
  85. int borrowedKey = sibling.keys[0];
  86. Node pointer = sibling.childPointers[0];
  87. in.keys[in.degree - 1] = parent.keys[0];
  88. in.childPointers[in.degree] = pointer;
  89. parent.keys[0] = borrowedKey;
  90. sibling.removePointer(0);
  91. Arrays.sort(sibling.keys);
  92. sibling.removePointer(0);
  93. shiftDown(in.childPointers, 1);
  94. } else if (in.leftSibling != null && in.leftSibling.isMergeable()) {
  95. } else if (in.rightSibling != null && in.rightSibling.isMergeable()) {
  96. sibling = in.rightSibling;
  97. sibling.keys[sibling.degree - 1] = parent.keys[parent.degree - 2];
  98. Arrays.sort(sibling.keys, 0, sibling.degree);
  99. parent.keys[parent.degree - 2] = null;
  100. for (int i = 0; i < in.childPointers.length; i++) {
  101. if (in.childPointers[i] != null) {
  102. sibling.prependChildPointer(in.childPointers[i]);
  103. in.childPointers[i].parent = sibling;
  104. in.removePointer(i);
  105. }
  106. }
  107. parent.removePointer(in);
  108. sibling.leftSibling = in.leftSibling;
  109. }
  110. if (parent != null && parent.isDeficient()) {
  111. handleDeficiency(parent);
  112. }
  113. }
  114. private boolean isEmpty() {
  115. return firstLeaf == null;
  116. }
  117. private int linearNullSearch(DictionaryPair[] dps) {
  118. for (int i = 0; i < dps.length; i++) {
  119. if (dps[i] == null) {
  120. return i;
  121. }
  122. }
  123. return -1;
  124. }
  125. private int linearNullSearch(Node[] pointers) {
  126. for (int i = 0; i < pointers.length; i++) {
  127. if (pointers[i] == null) {
  128. return i;
  129. }
  130. }
  131. return -1;
  132. }
  133. private void shiftDown(Node[] pointers, int amount) {
  134. Node[] newPointers = new Node[this.m + 1];
  135. for (int i = amount; i < pointers.length; i++) {
  136. newPointers[i - amount] = pointers[i];
  137. }
  138. pointers = newPointers;
  139. }
  140. private void sortDictionary(DictionaryPair[] dictionary) {
  141. Arrays.sort(dictionary, new Comparator<DictionaryPair>() {
  142. @Override
  143. public int compare(DictionaryPair o1, DictionaryPair o2) {
  144. if (o1 == null && o2 == null) {
  145. return 0;
  146. }
  147. if (o1 == null) {
  148. return 1;
  149. }
  150. if (o2 == null) {
  151. return -1;
  152. }
  153. return o1.compareTo(o2);
  154. }
  155. });
  156. }
  157. private Node[] splitChildPointers(InternalNode in, int split) {
  158. Node[] pointers = in.childPointers;
  159. Node[] halfPointers = new Node[this.m + 1];
  160. for (int i = split + 1; i < pointers.length; i++) {
  161. halfPointers[i - split - 1] = pointers[i];
  162. in.removePointer(i);
  163. }
  164. return halfPointers;
  165. }
  166. private DictionaryPair[] splitDictionary(LeafNode ln, int split) {
  167. DictionaryPair[] dictionary = ln.dictionary;
  168. DictionaryPair[] halfDict = new DictionaryPair[this.m];
  169. for (int i = split; i < dictionary.length; i++) {
  170. halfDict[i - split] = dictionary[i];
  171. ln.delete(i);
  172. }
  173. return halfDict;
  174. }
  175. private void splitInternalNode(InternalNode in) {
  176. InternalNode parent = in.parent;
  177. int midpoint = getMidpoint();
  178. int newParentKey = in.keys[midpoint];
  179. Integer[] halfKeys = splitKeys(in.keys, midpoint);
  180. Node[] halfPointers = splitChildPointers(in, midpoint);
  181. in.degree = linearNullSearch(in.childPointers);
  182. InternalNode sibling = new InternalNode(this.m, halfKeys, halfPointers);
  183. for (Node pointer : halfPointers) {
  184. if (pointer != null) {
  185. pointer.parent = sibling;
  186. }
  187. }
  188. sibling.rightSibling = in.rightSibling;
  189. if (sibling.rightSibling != null) {
  190. sibling.rightSibling.leftSibling = sibling;
  191. }
  192. in.rightSibling = sibling;
  193. sibling.leftSibling = in;
  194. if (parent == null) {
  195. Integer[] keys = new Integer[this.m];
  196. keys[0] = newParentKey;
  197. InternalNode newRoot = new InternalNode(this.m, keys);
  198. newRoot.appendChildPointer(in);
  199. newRoot.appendChildPointer(sibling);
  200. this.root = newRoot;
  201. in.parent = newRoot;
  202. sibling.parent = newRoot;
  203. } else {
  204. parent.keys[parent.degree - 1] = newParentKey;
  205. Arrays.sort(parent.keys, 0, parent.degree);
  206. int pointerIndex = parent.findIndexOfPointer(in) + 1;
  207. parent.insertChildPointer(sibling, pointerIndex);
  208. sibling.parent = parent;
  209. }
  210. }
  211. private Integer[] splitKeys(Integer[] keys, int split) {
  212. Integer[] halfKeys = new Integer[this.m];
  213. keys[split] = null;
  214. for (int i = split + 1; i < keys.length; i++) {
  215. halfKeys[i - split - 1] = keys[i];
  216. keys[i] = null;
  217. }
  218. return halfKeys;
  219. }
  220. public void insert(int key, double value) {
  221. if (isEmpty()) {
  222. LeafNode ln = new LeafNode(this.m, new DictionaryPair(key, value));
  223. this.firstLeaf = ln;
  224. } else {
  225. LeafNode ln = (this.root == null) ? this.firstLeaf : findLeafNode(key);
  226. if (!ln.insert(new DictionaryPair(key, value))) {
  227. ln.dictionary[ln.numPairs] = new DictionaryPair(key, value);
  228. ln.numPairs++;
  229. sortDictionary(ln.dictionary);
  230. int midpoint = getMidpoint();
  231. DictionaryPair[] halfDict = splitDictionary(ln, midpoint);
  232. if (ln.parent == null) {
  233. Integer[] parent_keys = new Integer[this.m];
  234. parent_keys[0] = halfDict[0].key;
  235. InternalNode parent = new InternalNode(this.m, parent_keys);
  236. ln.parent = parent;
  237. parent.appendChildPointer(ln);
  238. } else {
  239. int newParentKey = halfDict[0].key;
  240. ln.parent.keys[ln.parent.degree - 1] = newParentKey;
  241. Arrays.sort(ln.parent.keys, 0, ln.parent.degree);
  242. }
  243. LeafNode newLeafNode = new LeafNode(this.m, halfDict, ln.parent);
  244. int pointerIndex = ln.parent.findIndexOfPointer(ln) + 1;
  245. ln.parent.insertChildPointer(newLeafNode, pointerIndex);
  246. newLeafNode.rightSibling = ln.rightSibling;
  247. if (newLeafNode.rightSibling != null) {
  248. newLeafNode.rightSibling.leftSibling = newLeafNode;
  249. }
  250. ln.rightSibling = newLeafNode;
  251. newLeafNode.leftSibling = ln;
  252. if (this.root == null) {
  253. this.root = ln.parent;
  254. } else {
  255. InternalNode in = ln.parent;
  256. while (in != null) {
  257. if (in.isOverfull()) {
  258. splitInternalNode(in);
  259. } else {
  260. break;
  261. }
  262. in = in.parent;
  263. }
  264. }
  265. }
  266. }
  267. }
  268. public Double search(int key) {
  269. if (isEmpty()) {
  270. return null;
  271. }
  272. LeafNode ln = (this.root == null) ? this.firstLeaf : findLeafNode(key);
  273. DictionaryPair[] dps = ln.dictionary;
  274. int index = binarySearch(dps, ln.numPairs, key);
  275. if (index < 0) {
  276. return null;
  277. } else {
  278. return dps[index].value;
  279. }
  280. }
  281. public ArrayList<Double> search(int lowerBound, int upperBound) {
  282. ArrayList<Double> values = new ArrayList<Double>();
  283. LeafNode currNode = this.firstLeaf;
  284. while (currNode != null) {
  285. DictionaryPair dps[] = currNode.dictionary;
  286. for (DictionaryPair dp : dps) {
  287. if (dp == null) {
  288. break;
  289. }
  290. if (lowerBound <= dp.key && dp.key <= upperBound) {
  291. values.add(dp.value);
  292. }
  293. }
  294. currNode = currNode.rightSibling;
  295. }
  296. return values;
  297. }
  298. public BPlusTree(int m) {
  299. this.m = m;
  300. this.root = null;
  301. }
  302. public class Node {
  303. InternalNode parent;
  304. }
  305. private class InternalNode extends Node {
  306. int maxDegree;
  307. int minDegree;
  308. int degree;
  309. InternalNode leftSibling;
  310. InternalNode rightSibling;
  311. Integer[] keys;
  312. Node[] childPointers;
  313. private void appendChildPointer(Node pointer) {
  314. this.childPointers[degree] = pointer;
  315. this.degree++;
  316. }
  317. private int findIndexOfPointer(Node pointer) {
  318. for (int i = 0; i < childPointers.length; i++) {
  319. if (childPointers[i] == pointer) {
  320. return i;
  321. }
  322. }
  323. return -1;
  324. }
  325. private void insertChildPointer(Node pointer, int index) {
  326. for (int i = degree - 1; i >= index; i--) {
  327. childPointers[i + 1] = childPointers[i];
  328. }
  329. this.childPointers[index] = pointer;
  330. this.degree++;
  331. }
  332. private boolean isDeficient() {
  333. return this.degree < this.minDegree;
  334. }
  335. private boolean isLendable() {
  336. return this.degree > this.minDegree;
  337. }
  338. private boolean isMergeable() {
  339. return this.degree == this.minDegree;
  340. }
  341. private boolean isOverfull() {
  342. return this.degree == maxDegree + 1;
  343. }
  344. private void prependChildPointer(Node pointer) {
  345. for (int i = degree - 1; i >= 0; i--) {
  346. childPointers[i + 1] = childPointers[i];
  347. }
  348. this.childPointers[0] = pointer;
  349. this.degree++;
  350. }
  351. private void removeKey(int index) {
  352. this.keys[index] = null;
  353. }
  354. private void removePointer(int index) {
  355. this.childPointers[index] = null;
  356. this.degree--;
  357. }
  358. private void removePointer(Node pointer) {
  359. for (int i = 0; i < childPointers.length; i++) {
  360. if (childPointers[i] == pointer) {
  361. this.childPointers[i] = null;
  362. }
  363. }
  364. this.degree--;
  365. }
  366. private InternalNode(int m, Integer[] keys) {
  367. this.maxDegree = m;
  368. this.minDegree = (int) Math.ceil(m / 2.0);
  369. this.degree = 0;
  370. this.keys = keys;
  371. this.childPointers = new Node[this.maxDegree + 1];
  372. }
  373. private InternalNode(int m, Integer[] keys, Node[] pointers) {
  374. this.maxDegree = m;
  375. this.minDegree = (int) Math.ceil(m / 2.0);
  376. this.degree = linearNullSearch(pointers);
  377. this.keys = keys;
  378. this.childPointers = pointers;
  379. }
  380. }
  381. public class LeafNode extends Node {
  382. int maxNumPairs;
  383. int minNumPairs;
  384. int numPairs;
  385. LeafNode leftSibling;
  386. LeafNode rightSibling;
  387. DictionaryPair[] dictionary;
  388. public void delete(int index) {
  389. this.dictionary[index] = null;
  390. numPairs--;
  391. }
  392. public boolean insert(DictionaryPair dp) {
  393. if (this.isFull()) {
  394. return false;
  395. } else {
  396. this.dictionary[numPairs] = dp;
  397. numPairs++;
  398. Arrays.sort(this.dictionary, 0, numPairs);
  399. return true;
  400. }
  401. }
  402. public boolean isDeficient() {
  403. return numPairs < minNumPairs;
  404. }
  405. public boolean isFull() {
  406. return numPairs == maxNumPairs;
  407. }
  408. public boolean isLendable() {
  409. return numPairs > minNumPairs;
  410. }
  411. public boolean isMergeable() {
  412. return numPairs == minNumPairs;
  413. }
  414. public LeafNode(int m, DictionaryPair dp) {
  415. this.maxNumPairs = m - 1;
  416. this.minNumPairs = (int) (Math.ceil(m / 2) - 1);
  417. this.dictionary = new DictionaryPair[m];
  418. this.numPairs = 0;
  419. this.insert(dp);
  420. }
  421. public LeafNode(int m, DictionaryPair[] dps, InternalNode parent) {
  422. this.maxNumPairs = m - 1;
  423. this.minNumPairs = (int) (Math.ceil(m / 2) - 1);
  424. this.dictionary = dps;
  425. this.numPairs = linearNullSearch(dps);
  426. this.parent = parent;
  427. }
  428. }
  429. public class DictionaryPair implements Comparable<DictionaryPair> {
  430. int key;
  431. double value;
  432. public DictionaryPair(int key, double value) {
  433. this.key = key;
  434. this.value = value;
  435. }
  436. public int compareTo(DictionaryPair o) {
  437. if (key == o.key) {
  438. return 0;
  439. } else if (key > o.key) {
  440. return 1;
  441. } else {
  442. return -1;
  443. }
  444. }
  445. }
  446. public static void main(String[] args) {
  447. BPlusTree bpt = null;
  448. bpt = new BPlusTree(3);
  449. bpt.insert(5, 33);
  450. bpt.insert(15, 21);
  451. bpt.insert(25, 31);
  452. bpt.insert(35, 41);
  453. bpt.insert(45, 10);
  454. if (bpt.search(15) != null) {
  455. System.out.println("Found");
  456. } else {
  457. System.out.println("Not Found");
  458. }
  459. ;
  460. }
  461. }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// Searching on a B+ Tree in C

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Default order
#define ORDER 3

typedef struct record {
  int value;
} record;

// Node
typedef struct node {
  void **pointers;
  int *keys;
  struct node *parent;
  bool is_leaf;
  int num_keys;
  struct node *next;
} node;

int order = ORDER;
node *queue = NULL;
bool verbose_output = false;

// Enqueue
void enqueue(node *new_node);

// Dequeue
node *dequeue(void);
int height(node *const root);
int pathToLeaves(node *const root, node *child);
void printLeaves(node *const root);
void printTree(node *const root);
void findAndPrint(node *const root, int key, bool verbose);
void findAndPrintRange(node *const root, int range1, int range2, bool verbose);
int findRange(node *const root, int key_start, int key_end, bool verbose,
        int returned_keys[], void *returned_pointers[]);
node *findLeaf(node *const root, int key, bool verbose);
record *find(node *root, int key, bool verbose, node **leaf_out);
int cut(int length);

record *makeRecord(int value);
node *makeNode(void);
node *makeLeaf(void);
int getLeftIndex(node *parent, node *left);
node *insertIntoLeaf(node *leaf, int key, record *pointer);
node *insertIntoLeafAfterSplitting(node *root, node *leaf, int key,
                   record *pointer);
node *insertIntoNode(node *root, node *parent,
           int left_index, int key, node *right);
node *insertIntoNodeAfterSplitting(node *root, node *parent,
                   int left_index,
                   int key, node *right);
node *insertIntoParent(node *root, node *left, int key, node *right);
node *insertIntoNewRoot(node *left, int key, node *right);
node *startNewTree(int key, record *pointer);
node *insert(node *root, int key, int value);

// Enqueue
void enqueue(node *new_node) {
  node *c;
  if (queue == NULL) {
    queue = new_node;
    queue->next = NULL;
  } else {
    c = queue;
    while (c->next != NULL) {
      c = c->next;
    }
    c->next = new_node;
    new_node->next = NULL;
  }
}

// Dequeue
node *dequeue(void) {
  node *n = queue;
  queue = queue->next;
  n->next = NULL;
  return n;
}

// Print the leaves
void printLeaves(node *const root) {
  if (root == NULL) {
    printf("Empty tree.\n");
    return;
  }
  int i;
  node *c = root;
  while (!c->is_leaf)
    c = c->pointers[0];
  while (true) {
    for (i = 0; i < c->num_keys; i++) {
      if (verbose_output)
        printf("%p ", c->pointers[i]);
      printf("%d ", c->keys[i]);
    }
    if (verbose_output)
      printf("%p ", c->pointers[order - 1]);
    if (c->pointers[order - 1] != NULL) {
      printf(" | ");
      c = c->pointers[order - 1];
    } else
      break;
  }
  printf("\n");
}

// Calculate height
int height(node *const root) {
  int h = 0;
  node *c = root;
  while (!c->is_leaf) {
    c = c->pointers[0];
    h++;
  }
  return h;
}

// Get path to root
int pathToLeaves(node *const root, node *child) {
  int length = 0;
  node *c = child;
  while (c != root) {
    c = c->parent;
    length++;
  }
  return length;
}

// Print the tree
void printTree(node *const root) {
  node *n = NULL;
  int i = 0;
  int rank = 0;
  int new_rank = 0;

  if (root == NULL) {
    printf("Empty tree.\n");
    return;
  }
  queue = NULL;
  enqueue(root);
  while (queue != NULL) {
    n = dequeue();
    if (n->parent != NULL && n == n->parent->pointers[0]) {
      new_rank = pathToLeaves(root, n);
      if (new_rank != rank) {
        rank = new_rank;
        printf("\n");
      }
    }
    if (verbose_output)
      printf("(%p)", n);
    for (i = 0; i < n->num_keys; i++) {
      if (verbose_output)
        printf("%p ", n->pointers[i]);
      printf("%d ", n->keys[i]);
    }
    if (!n->is_leaf)
      for (i = 0; i <= n->num_keys; i++)
        enqueue(n->pointers[i]);
    if (verbose_output) {
      if (n->is_leaf)
        printf("%p ", n->pointers[order - 1]);
      else
        printf("%p ", n->pointers[n->num_keys]);
    }
    printf("| ");
  }
  printf("\n");
}

// Find the node and print it
void findAndPrint(node *const root, int key, bool verbose) {
  node *leaf = NULL;
  record *r = find(root, key, verbose, NULL);
  if (r == NULL)
    printf("Record not found under key %d.\n", key);
  else
    printf("Record at %p -- key %d, value %d.\n",
         r, key, r->value);
}

// Find and print the range
void findAndPrintRange(node *const root, int key_start, int key_end,
             bool verbose) {
  int i;
  int array_size = key_end - key_start + 1;
  int returned_keys[array_size];
  void *returned_pointers[array_size];
  int num_found = findRange(root, key_start, key_end, verbose,
                returned_keys, returned_pointers);
  if (!num_found)
    printf("None found.\n");
  else {
    for (i = 0; i < num_found; i++)
      printf("Key: %d   Location: %p  Value: %d\n",
           returned_keys[i],
           returned_pointers[i],
           ((record *)
            returned_pointers[i])
             ->value);
  }
}

// Find the range
int findRange(node *const root, int key_start, int key_end, bool verbose,
        int returned_keys[], void *returned_pointers[]) {
  int i, num_found;
  num_found = 0;
  node *n = findLeaf(root, key_start, verbose);
  if (n == NULL)
    return 0;
  for (i = 0; i < n->num_keys && n->keys[i] < key_start; i++)
    ;
  if (i == n->num_keys)
    return 0;
  while (n != NULL) {
    for (; i < n->num_keys && n->keys[i] <= key_end; i++) {
      returned_keys[num_found] = n->keys[i];
      returned_pointers[num_found] = n->pointers[i];
      num_found++;
    }
    n = n->pointers[order - 1];
    i = 0;
  }
  return num_found;
}

// Find the leaf
node *findLeaf(node *const root, int key, bool verbose) {
  if (root == NULL) {
    if (verbose)
      printf("Empty tree.\n");
    return root;
  }
  int i = 0;
  node *c = root;
  while (!c->is_leaf) {
    if (verbose) {
      printf("[");
      for (i = 0; i < c->num_keys - 1; i++)
        printf("%d ", c->keys[i]);
      printf("%d] ", c->keys[i]);
    }
    i = 0;
    while (i < c->num_keys) {
      if (key >= c->keys[i])
        i++;
      else
        break;
    }
    if (verbose)
      printf("%d ->\n", i);
    c = (node *)c->pointers[i];
  }
  if (verbose) {
    printf("Leaf [");
    for (i = 0; i < c->num_keys - 1; i++)
      printf("%d ", c->keys[i]);
    printf("%d] ->\n", c->keys[i]);
  }
  return c;
}

record *find(node *root, int key, bool verbose, node **leaf_out) {
  if (root == NULL) {
    if (leaf_out != NULL) {
      *leaf_out = NULL;
    }
    return NULL;
  }

  int i = 0;
  node *leaf = NULL;

  leaf = findLeaf(root, key, verbose);

  for (i = 0; i < leaf->num_keys; i++)
    if (leaf->keys[i] == key)
      break;
  if (leaf_out != NULL) {
    *leaf_out = leaf;
  }
  if (i == leaf->num_keys)
    return NULL;
  else
    return (record *)leaf->pointers[i];
}

int cut(int length) {
  if (length % 2 == 0)
    return length / 2;
  else
    return length / 2 + 1;
}

record *makeRecord(int value) {
  record *new_record = (record *)malloc(sizeof(record));
  if (new_record == NULL) {
    perror("Record creation.");
    exit(EXIT_FAILURE);
  } else {
    new_record->value = value;
  }
  return new_record;
}

node *makeNode(void) {
  node *new_node;
  new_node = malloc(sizeof(node));
  if (new_node == NULL) {
    perror("Node creation.");
    exit(EXIT_FAILURE);
  }
  new_node->keys = malloc((order - 1) * sizeof(int));
  if (new_node->keys == NULL) {
    perror("New node keys array.");
    exit(EXIT_FAILURE);
  }
  new_node->pointers = malloc(order * sizeof(void *));
  if (new_node->pointers == NULL) {
    perror("New node pointers array.");
    exit(EXIT_FAILURE);
  }
  new_node->is_leaf = false;
  new_node->num_keys = 0;
  new_node->parent = NULL;
  new_node->next = NULL;
  return new_node;
}

node *makeLeaf(void) {
  node *leaf = makeNode();
  leaf->is_leaf = true;
  return leaf;
}

int getLeftIndex(node *parent, node *left) {
  int left_index = 0;
  while (left_index <= parent->num_keys &&
       parent->pointers[left_index] != left)
    left_index++;
  return left_index;
}

node *insertIntoLeaf(node *leaf, int key, record *pointer) {
  int i, insertion_point;

  insertion_point = 0;
  while (insertion_point < leaf->num_keys && leaf->keys[insertion_point] < key)
    insertion_point++;

  for (i = leaf->num_keys; i > insertion_point; i--) {
    leaf->keys[i] = leaf->keys[i - 1];
    leaf->pointers[i] = leaf->pointers[i - 1];
  }
  leaf->keys[insertion_point] = key;
  leaf->pointers[insertion_point] = pointer;
  leaf->num_keys++;
  return leaf;
}

node *insertIntoLeafAfterSplitting(node *root, node *leaf, int key, record *pointer) {
  node *new_leaf;
  int *temp_keys;
  void **temp_pointers;
  int insertion_index, split, new_key, i, j;

  new_leaf = makeLeaf();

  temp_keys = malloc(order * sizeof(int));
  if (temp_keys == NULL) {
    perror("Temporary keys array.");
    exit(EXIT_FAILURE);
  }

  temp_pointers = malloc(order * sizeof(void *));
  if (temp_pointers == NULL) {
    perror("Temporary pointers array.");
    exit(EXIT_FAILURE);
  }

  insertion_index = 0;
  while (insertion_index < order - 1 && leaf->keys[insertion_index] < key)
    insertion_index++;

  for (i = 0, j = 0; i < leaf->num_keys; i++, j++) {
    if (j == insertion_index)
      j++;
    temp_keys[j] = leaf->keys[i];
    temp_pointers[j] = leaf->pointers[i];
  }

  temp_keys[insertion_index] = key;
  temp_pointers[insertion_index] = pointer;

  leaf->num_keys = 0;

  split = cut(order - 1);

  for (i = 0; i < split; i++) {
    leaf->pointers[i] = temp_pointers[i];
    leaf->keys[i] = temp_keys[i];
    leaf->num_keys++;
  }

  for (i = split, j = 0; i < order; i++, j++) {
    new_leaf->pointers[j] = temp_pointers[i];
    new_leaf->keys[j] = temp_keys[i];
    new_leaf->num_keys++;
  }

  free(temp_pointers);
  free(temp_keys);

  new_leaf->pointers[order - 1] = leaf->pointers[order - 1];
  leaf->pointers[order - 1] = new_leaf;

  for (i = leaf->num_keys; i < order - 1; i++)
    leaf->pointers[i] = NULL;
  for (i = new_leaf->num_keys; i < order - 1; i++)
    new_leaf->pointers[i] = NULL;

  new_leaf->parent = leaf->parent;
  new_key = new_leaf->keys[0];

  return insertIntoParent(root, leaf, new_key, new_leaf);
}

node *insertIntoNode(node *root, node *n,
           int left_index, int key, node *right) {
  int i;

  for (i = n->num_keys; i > left_index; i--) {
    n->pointers[i + 1] = n->pointers[i];
    n->keys[i] = n->keys[i - 1];
  }
  n->pointers[left_index + 1] = right;
  n->keys[left_index] = key;
  n->num_keys++;
  return root;
}

node *insertIntoNodeAfterSplitting(node *root, node *old_node, int left_index,
                   int key, node *right) {
  int i, j, split, k_prime;
  node *new_node, *child;
  int *temp_keys;
  node **temp_pointers;

  temp_pointers = malloc((order + 1) * sizeof(node *));
  if (temp_pointers == NULL) {
    exit(EXIT_FAILURE);
  }
  temp_keys = malloc(order * sizeof(int));
  if (temp_keys == NULL) {
    exit(EXIT_FAILURE);
  }

  for (i = 0, j = 0; i < old_node->num_keys + 1; i++, j++) {
    if (j == left_index + 1)
      j++;
    temp_pointers[j] = old_node->pointers[i];
  }

  for (i = 0, j = 0; i < old_node->num_keys; i++, j++) {
    if (j == left_index)
      j++;
    temp_keys[j] = old_node->keys[i];
  }

  temp_pointers[left_index + 1] = right;
  temp_keys[left_index] = key;

  split = cut(order);
  new_node = makeNode();
  old_node->num_keys = 0;
  for (i = 0; i < split - 1; i++) {
    old_node->pointers[i] = temp_pointers[i];
    old_node->keys[i] = temp_keys[i];
    old_node->num_keys++;
  }
  old_node->pointers[i] = temp_pointers[i];
  k_prime = temp_keys[split - 1];
  for (++i, j = 0; i < order; i++, j++) {
    new_node->pointers[j] = temp_pointers[i];
    new_node->keys[j] = temp_keys[i];
    new_node->num_keys++;
  }
  new_node->pointers[j] = temp_pointers[i];
  free(temp_pointers);
  free(temp_keys);
  new_node->parent = old_node->parent;
  for (i = 0; i <= new_node->num_keys; i++) {
    child = new_node->pointers[i];
    child->parent = new_node;
  }

  return insertIntoParent(root, old_node, k_prime, new_node);
}

node *insertIntoParent(node *root, node *left, int key, node *right) {
  int left_index;
  node *parent;

  parent = left->parent;

  if (parent == NULL)
    return insertIntoNewRoot(left, key, right);

  left_index = getLeftIndex(parent, left);

  if (parent->num_keys < order - 1)
    return insertIntoNode(root, parent, left_index, key, right);

  return insertIntoNodeAfterSplitting(root, parent, left_index, key, right);
}

node *insertIntoNewRoot(node *left, int key, node *right) {
  node *root = makeNode();
  root->keys[0] = key;
  root->pointers[0] = left;
  root->pointers[1] = right;
  root->num_keys++;
  root->parent = NULL;
  left->parent = root;
  right->parent = root;
  return root;
}

node *startNewTree(int key, record *pointer) {
  node *root = makeLeaf();
  root->keys[0] = key;
  root->pointers[0] = pointer;
  root->pointers[order - 1] = NULL;
  root->parent = NULL;
  root->num_keys++;
  return root;
}

node *insert(node *root, int key, int value) {
  record *record_pointer = NULL;
  node *leaf = NULL;

  record_pointer = find(root, key, false, NULL);
  if (record_pointer != NULL) {
    record_pointer->value = value;
    return root;
  }

  record_pointer = makeRecord(value);

  if (root == NULL)
    return startNewTree(key, record_pointer);

  leaf = findLeaf(root, key, false);

  if (leaf->num_keys < order - 1) {
    leaf = insertIntoLeaf(leaf, key, record_pointer);
    return root;
  }

  return insertIntoLeafAfterSplitting(root, leaf, key, record_pointer);
}

int main() {
  node *root;
  char instruction;

  root = NULL;

  root = insert(root, 5, 33);
  root = insert(root, 15, 21);
  root = insert(root, 25, 31);
  root = insert(root, 35, 41);
  root = insert(root, 45, 10);

  printTree(root);

  findAndPrint(root, 15, instruction = 'a');
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Searching on a B+ tree in C++

#include <climits>
#include <fstream>
#include <iostream>
#include <sstream>
using namespace std;
int MAX = 3;

// BP node
class Node {
  bool IS_LEAF;
  int *key, size;
  Node **ptr;
  friend class BPTree;

   public:
  Node();
};

// BP tree
class BPTree {
  Node *root;
  void insertInternal(int, Node *, Node *);
  Node *findParent(Node *, Node *);

   public:
  BPTree();
  void search(int);
  void insert(int);
  void display(Node *);
  Node *getRoot();
};

Node::Node() {
  key = new int[MAX];
  ptr = new Node *[MAX + 1];
}

BPTree::BPTree() {
  root = NULL;
}

// Search operation
void BPTree::search(int x) {
  if (root == NULL) {
    cout << "Tree is empty\n";
  } else {
    Node *cursor = root;
    while (cursor->IS_LEAF == false) {
      for (int i = 0; i < cursor->size; i++) {
        if (x < cursor->key[i]) {
          cursor = cursor->ptr[i];
          break;
        }
        if (i == cursor->size - 1) {
          cursor = cursor->ptr[i + 1];
          break;
        }
      }
    }
    for (int i = 0; i < cursor->size; i++) {
      if (cursor->key[i] == x) {
        cout << "Found\n";
        return;
      }
    }
    cout << "Not found\n";
  }
}

// Insert Operation
void BPTree::insert(int x) {
  if (root == NULL) {
    root = new Node;
    root->key[0] = x;
    root->IS_LEAF = true;
    root->size = 1;
  } else {
    Node *cursor = root;
    Node *parent;
    while (cursor->IS_LEAF == false) {
      parent = cursor;
      for (int i = 0; i < cursor->size; i++) {
        if (x < cursor->key[i]) {
          cursor = cursor->ptr[i];
          break;
        }
        if (i == cursor->size - 1) {
          cursor = cursor->ptr[i + 1];
          break;
        }
      }
    }
    if (cursor->size < MAX) {
      int i = 0;
      while (x > cursor->key[i] && i < cursor->size)
        i++;
      for (int j = cursor->size; j > i; j--) {
        cursor->key[j] = cursor->key[j - 1];
      }
      cursor->key[i] = x;
      cursor->size++;
      cursor->ptr[cursor->size] = cursor->ptr[cursor->size - 1];
      cursor->ptr[cursor->size - 1] = NULL;
    } else {
      Node *newLeaf = new Node;
      int virtualNode[MAX + 1];
      for (int i = 0; i < MAX; i++) {
        virtualNode[i] = cursor->key[i];
      }
      int i = 0, j;
      while (x > virtualNode[i] && i < MAX)
        i++;
      for (int j = MAX + 1; j > i; j--) {
        virtualNode[j] = virtualNode[j - 1];
      }
      virtualNode[i] = x;
      newLeaf->IS_LEAF = true;
      cursor->size = (MAX + 1) / 2;
      newLeaf->size = MAX + 1 - (MAX + 1) / 2;
      cursor->ptr[cursor->size] = newLeaf;
      newLeaf->ptr[newLeaf->size] = cursor->ptr[MAX];
      cursor->ptr[MAX] = NULL;
      for (i = 0; i < cursor->size; i++) {
        cursor->key[i] = virtualNode[i];
      }
      for (i = 0, j = cursor->size; i < newLeaf->size; i++, j++) {
        newLeaf->key[i] = virtualNode[j];
      }
      if (cursor == root) {
        Node *newRoot = new Node;
        newRoot->key[0] = newLeaf->key[0];
        newRoot->ptr[0] = cursor;
        newRoot->ptr[1] = newLeaf;
        newRoot->IS_LEAF = false;
        newRoot->size = 1;
        root = newRoot;
      } else {
        insertInternal(newLeaf->key[0], parent, newLeaf);
      }
    }
  }
}

// Insert Operation
void BPTree::insertInternal(int x, Node *cursor, Node *child) {
  if (cursor->size < MAX) {
    int i = 0;
    while (x > cursor->key[i] && i < cursor->size)
      i++;
    for (int j = cursor->size; j > i; j--) {
      cursor->key[j] = cursor->key[j - 1];
    }
    for (int j = cursor->size + 1; j > i + 1; j--) {
      cursor->ptr[j] = cursor->ptr[j - 1];
    }
    cursor->key[i] = x;
    cursor->size++;
    cursor->ptr[i + 1] = child;
  } else {
    Node *newInternal = new Node;
    int virtualKey[MAX + 1];
    Node *virtualPtr[MAX + 2];
    for (int i = 0; i < MAX; i++) {
      virtualKey[i] = cursor->key[i];
    }
    for (int i = 0; i < MAX + 1; i++) {
      virtualPtr[i] = cursor->ptr[i];
    }
    int i = 0, j;
    while (x > virtualKey[i] && i < MAX)
      i++;
    for (int j = MAX + 1; j > i; j--) {
      virtualKey[j] = virtualKey[j - 1];
    }
    virtualKey[i] = x;
    for (int j = MAX + 2; j > i + 1; j--) {
      virtualPtr[j] = virtualPtr[j - 1];
    }
    virtualPtr[i + 1] = child;
    newInternal->IS_LEAF = false;
    cursor->size = (MAX + 1) / 2;
    newInternal->size = MAX - (MAX + 1) / 2;
    for (i = 0, j = cursor->size + 1; i < newInternal->size; i++, j++) {
      newInternal->key[i] = virtualKey[j];
    }
    for (i = 0, j = cursor->size + 1; i < newInternal->size + 1; i++, j++) {
      newInternal->ptr[i] = virtualPtr[j];
    }
    if (cursor == root) {
      Node *newRoot = new Node;
      newRoot->key[0] = cursor->key[cursor->size];
      newRoot->ptr[0] = cursor;
      newRoot->ptr[1] = newInternal;
      newRoot->IS_LEAF = false;
      newRoot->size = 1;
      root = newRoot;
    } else {
      insertInternal(cursor->key[cursor->size], findParent(root, cursor), newInternal);
    }
  }
}

// Find the parent
Node *BPTree::findParent(Node *cursor, Node *child) {
  Node *parent;
  if (cursor->IS_LEAF || (cursor->ptr[0])->IS_LEAF) {
    return NULL;
  }
  for (int i = 0; i < cursor->size + 1; i++) {
    if (cursor->ptr[i] == child) {
      parent = cursor;
      return parent;
    } else {
      parent = findParent(cursor->ptr[i], child);
      if (parent != NULL)
        return parent;
    }
  }
  return parent;
}

// Print the tree
void BPTree::display(Node *cursor) {
  if (cursor != NULL) {
    for (int i = 0; i < cursor->size; i++) {
      cout << cursor->key[i] << " ";
    }
    cout << "\n";
    if (cursor->IS_LEAF != true) {
      for (int i = 0; i < cursor->size + 1; i++) {
        display(cursor->ptr[i]);
      }
    }
  }
}

// Get the root
Node *BPTree::getRoot() {
  return root;
}

int main() {
  BPTree node;
  node.insert(5);
  node.insert(15);
  node.insert(25);
  node.insert(35);
  node.insert(45);
  node.insert(55);
  node.insert(40);
  node.insert(30);
  node.insert(20);
  node.display(node.getRoot());

  node.search(15);
}

搜索复杂度

时间复杂度

如果在节点内部实现线性搜索,则总复杂度为Θ(log_t n)

如果使用二分搜索,则总复杂度为Θ(log2 t x log_t n)


B+ 树应用

  • 多级索引
  • 树上的更快操作(插入,删除,搜索)
  • 数据库索引