在本教程中,您将学习如何从 b 树中删除键。 此外,您还将找到在 C,C++ ,Java 和 Python 中从 B 树中删除键的工作示例。
删除 B 树上的元素包括三个主要事件:搜索要删除的键存在的节点,删除键并按需平衡树。
删除树时,可能会发生称为下溢的条件。 当节点包含的数量少于其应持有的最小键数时,就会发生下溢。
在研究删除操作之前,应了解以下术语:
- 有序前驱
节点左子级上的最大键称为其有序前驱。 - 有序后继
节点右子级上的最小键称为其有序后继。
删除操作
在执行以下步骤之前,必须了解有关度为m的 B 树的这些事实。
- 一个节点最多可以有
m个子节点。 (即 3) - 一个节点最多可以包含
m - 1个键。 (即 2) - 一个节点至少应具有
⌈m/2⌉个子节点。 (即 2) - 一个节点(根节点除外)应至少包含
⌈m/2⌉ - 1键。 (即 1)
B 树中的删除操作主要有三种情况。
情况一
要删除的键位于叶子中。 有两种情况。
删除键不会违反节点应持有的最小键数的属性。
在下面的树中,删除 32 不违反上述属性。
从 B 树中删除叶子键(32)键的删除违反了节点应持有的最小键数的属性。 在这种情况下,我们以从左到右的顺序从其直接相邻的兄弟节点借用键。
首先,访问紧邻的左兄弟姐妹。 如果左兄弟节点的键数目超过最小数目,则从该节点借用键。
否则,请检查以从紧邻的右同级节点借用。
在下面的树中,删除 31 将导致上述情况。 让我们从左侧兄弟节点借用一个键。
删除叶子键(31)
如果两个直接同级节点都已经具有最小数量的键,则将该节点与左同级节点或右同级节点合并。 此合并是通过父节点完成的。
在上述情况下,删除 30 个结果。
删除叶子键(30)
情况二
如果要删除的键位于内部节点中,则会发生以下情况。
如果左子节点的键数超过最小数目,则删除的内部节点将替换为有序的前驱节点。
删除内部节点(33)如果正确的子项超过了最小数目的键,则删除的内部节点将被有序后继替换。
如果任一子项的键数恰好最小,则合并左子项和右子项。
删除内部节点(30)
合并后,如果父节点的键数少于最小数目,则像情况 I 一样查找同级。
情况三
在这种情况下,树的高度会缩小。 如果目标键位于内部节点中,并且键的删除导致节点中键的数量减少(即少于所需的最小数量),则寻找有序前驱和有序后继。 如果两个子级都包含最少数量的钥匙,则无法进行借用。 这导致情况二(3),即合并子级。
同样,寻找同胞借用钥匙。 但是,如果同级也只有最少数量的键,则将同级节点与父级合并。 相应地安排子级们(增加顺序)。

删除内部节点(10)
Python,Java 和 C/C++ 示例
# Deleting a key on a B-tree in Python# Btree nodeclass BTreeNode:def __init__(self, leaf=False):self.leaf = leafself.keys = []self.child = []class BTree:def __init__(self, t):self.root = BTreeNode(True)self.t = t# Insert a keydef insert(self, k):root = self.rootif len(root.keys) == (2 * self.t) - 1:temp = BTreeNode()self.root = temptemp.child.insert(0, root)self.split_child(temp, 0)self.insert_non_full(temp, k)else:self.insert_non_full(root, k)# Insert non fulldef insert_non_full(self, x, k):i = len(x.keys) - 1if x.leaf:x.keys.append((None, None))while i >= 0 and k[0] < x.keys[i][0]:x.keys[i + 1] = x.keys[i]i -= 1x.keys[i + 1] = kelse:while i >= 0 and k[0] < x.keys[i][0]:i -= 1i += 1if len(x.child[i].keys) == (2 * self.t) - 1:self.split_child(x, i)if k[0] > x.keys[i][0]:i += 1self.insert_non_full(x.child[i], k)# Split the childdef split_child(self, x, i):t = self.ty = x.child[i]z = BTreeNode(y.leaf)x.child.insert(i + 1, z)x.keys.insert(i, y.keys[t - 1])z.keys = y.keys[t: (2 * t) - 1]y.keys = y.keys[0: t - 1]if not y.leaf:z.child = y.child[t: 2 * t]y.child = y.child[0: t - 1]# Delete a nodedef delete(self, x, k):t = self.ti = 0while i < len(x.keys) and k[0] > x.keys[i][0]:i += 1if x.leaf:if i < len(x.keys) and x.keys[i][0] == k[0]:x.keys.pop(i)returnreturnif i < len(x.keys) and x.keys[i][0] == k[0]:return self.delete_internal_node(x, k, i)elif len(x.child[i].keys) >= t:self.delete(x.child[i], k)else:if i != 0 and i + 2 < len(x.child):if len(x.child[i - 1].keys) >= t:self.delete_sibling(x, i, i - 1)elif len(x.child[i + 1].keys) >= t:self.delete_sibling(x, i, i + 1)else:self.delete_merge(x, i, i + 1)elif i == 0:if len(x.child[i + 1].keys) >= t:self.delete_sibling(x, i, i + 1)else:self.delete_merge(x, i, i + 1)elif i + 1 == len(x.child):if len(x.child[i - 1].keys) >= t:self.delete_sibling(x, i, i - 1)else:self.delete_merge(x, i, i - 1)self.delete(x.child[i], k)# Delete internal nodedef delete_internal_node(self, x, k, i):t = self.tif x.leaf:if x.keys[i][0] == k[0]:x.keys.pop(i)returnreturnif len(x.child[i].keys) >= t:x.keys[i] = self.delete_predecessor(x.child[i])returnelif len(x.child[i + 1].keys) >= t:x.keys[i] = self.delete_successor(x.child[i + 1])returnelse:self.delete_merge(x, i, i + 1)self.delete_internal_node(x.child[i], k, self.t - 1)# Delete the predecessordef delete_predecessor(self, x):if x.leaf:return x.pop()n = len(x.keys) - 1if len(x.child[n].keys) >= self.t:self.delete_sibling(x, n + 1, n)else:self.delete_merge(x, n, n + 1)self.delete_predecessor(x.child[n])# Delete the successordef delete_successor(self, x):if x.leaf:return x.keys.pop(0)if len(x.child[1].keys) >= self.t:self.delete_sibling(x, 0, 1)else:self.delete_merge(x, 0, 1)self.delete_successor(x.child[0])# Delete resolutiondef delete_merge(self, x, i, j):cnode = x.child[i]if j > i:rsnode = x.child[j]cnode.keys.append(x.keys[i])for k in range(len(rsnode.keys)):cnode.keys.append(rsnode.keys[k])if len(rsnode.child) > 0:cnode.child.append(rsnode.child[k])if len(rsnode.child) > 0:cnode.child.append(rsnode.child.pop())new = cnodex.keys.pop(i)x.child.pop(j)else:lsnode = x.child[j]lsnode.keys.append(x.keys[j])for i in range(len(cnode.keys)):lsnode.keys.append(cnode.keys[i])if len(lsnode.child) > 0:lsnode.child.append(cnode.child[i])if len(lsnode.child) > 0:lsnode.child.append(cnode.child.pop())new = lsnodex.keys.pop(j)x.child.pop(i)if x == self.root and len(x.keys) == 0:self.root = new# Delete the siblingdef delete_sibling(self, x, i, j):cnode = x.child[i]if i < j:rsnode = x.child[j]cnode.keys.append(x.keys[i])x.keys[i] = rsnode.keys[0]if len(rsnode.child) > 0:cnode.child.append(rsnode.child[0])rsnode.child.pop(0)rsnode.keys.pop(0)else:lsnode = x.child[j]cnode.keys.insert(0, x.keys[i - 1])x.keys[i - 1] = lsnode.keys.pop()if len(lsnode.child) > 0:cnode.child.insert(0, lsnode.child.pop())# Print the treedef print_tree(self, x, l=0):print("Level ", l, " ", len(x.keys), end=":")for i in x.keys:print(i, end=" ")print()l += 1if len(x.child) > 0:for i in x.child:self.print_tree(i, l)def main():B = BTree(3)for i in range(10):B.insert((i, 2 * i))B.print_tree(B.root)B.delete(B.root, (8,))print("\n")B.print_tree(B.root)
// Inserting a key on a B-tree in Javaimport java.util.Stack;public class BTree {private int T;public class Node {int n;int key[] = new int[2 * T - 1];Node child[] = new Node[2 * T];boolean leaf = true;public int Find(int k) {for (int i = 0; i < this.n; i++) {if (this.key[i] == k) {return i;}}return -1;};}public BTree(int t) {T = t;root = new Node();root.n = 0;root.leaf = true;}private Node root;// Search the keyprivate Node Search(Node x, int key) {int i = 0;if (x == null)return x;for (i = 0; i < x.n; i++) {if (key < x.key[i]) {break;}if (key == x.key[i]) {return x;}}if (x.leaf) {return null;} else {return Search(x.child[i], key);}}// Split functionprivate void Split(Node x, int pos, Node y) {Node z = new Node();z.leaf = y.leaf;z.n = T - 1;for (int j = 0; j < T - 1; j++) {z.key[j] = y.key[j + T];}if (!y.leaf) {for (int j = 0; j < T; j++) {z.child[j] = y.child[j + T];}}y.n = T - 1;for (int j = x.n; j >= pos + 1; j--) {x.child[j + 1] = x.child[j];}x.child[pos + 1] = z;for (int j = x.n - 1; j >= pos; j--) {x.key[j + 1] = x.key[j];}x.key[pos] = y.key[T - 1];x.n = x.n + 1;}// Insert the keypublic void Insert(final int key) {Node r = root;if (r.n == 2 * T - 1) {Node s = new Node();root = s;s.leaf = false;s.n = 0;s.child[0] = r;Split(s, 0, r);_Insert(s, key);} else {_Insert(r, key);}}// Insert the nodefinal private void _Insert(Node x, int k) {if (x.leaf) {int i = 0;for (i = x.n - 1; i >= 0 && k < x.key[i]; i--) {x.key[i + 1] = x.key[i];}x.key[i + 1] = k;x.n = x.n + 1;} else {int i = 0;for (i = x.n - 1; i >= 0 && k < x.key[i]; i--) {};i++;Node tmp = x.child[i];if (tmp.n == 2 * T - 1) {Split(x, i, tmp);if (k > x.key[i]) {i++;}}_Insert(x.child[i], k);}}public void Show() {Show(root);}private void Remove(Node x, int key) {int pos = x.Find(key);if (pos != -1) {if (x.leaf) {int i = 0;for (i = 0; i < x.n && x.key[i] != key; i++) {};for (; i < x.n; i++) {if (i != 2 * T - 2) {x.key[i] = x.key[i + 1];}}x.n--;return;}if (!x.leaf) {Node pred = x.child[pos];int predKey = 0;if (pred.n >= T) {for (;;) {if (pred.leaf) {System.out.println(pred.n);predKey = pred.key[pred.n - 1];break;} else {pred = pred.child[pred.n];}}Remove(pred, predKey);x.key[pos] = predKey;return;}Node nextNode = x.child[pos + 1];if (nextNode.n >= T) {int nextKey = nextNode.key[0];if (!nextNode.leaf) {nextNode = nextNode.child[0];for (;;) {if (nextNode.leaf) {nextKey = nextNode.key[nextNode.n - 1];break;} else {nextNode = nextNode.child[nextNode.n];}}}Remove(nextNode, nextKey);x.key[pos] = nextKey;return;}int temp = pred.n + 1;pred.key[pred.n++] = x.key[pos];for (int i = 0, j = pred.n; i < nextNode.n; i++) {pred.key[j++] = nextNode.key[i];pred.n++;}for (int i = 0; i < nextNode.n + 1; i++) {pred.child[temp++] = nextNode.child[i];}x.child[pos] = pred;for (int i = pos; i < x.n; i++) {if (i != 2 * T - 2) {x.key[i] = x.key[i + 1];}}for (int i = pos + 1; i < x.n + 1; i++) {if (i != 2 * T - 1) {x.child[i] = x.child[i + 1];}}x.n--;if (x.n == 0) {if (x == root) {root = x.child[0];}x = x.child[0];}Remove(pred, key);return;}} else {for (pos = 0; pos < x.n; pos++) {if (x.key[pos] > key) {break;}}Node tmp = x.child[pos];if (tmp.n >= T) {Remove(tmp, key);return;}if (true) {Node nb = null;int devider = -1;if (pos != x.n && x.child[pos + 1].n >= T) {devider = x.key[pos];nb = x.child[pos + 1];x.key[pos] = nb.key[0];tmp.key[tmp.n++] = devider;tmp.child[tmp.n] = nb.child[0];for (int i = 1; i < nb.n; i++) {nb.key[i - 1] = nb.key[i];}for (int i = 1; i <= nb.n; i++) {nb.child[i - 1] = nb.child[i];}nb.n--;Remove(tmp, key);return;} else if (pos != 0 && x.child[pos - 1].n >= T) {devider = x.key[pos - 1];nb = x.child[pos - 1];x.key[pos - 1] = nb.key[nb.n - 1];Node child = nb.child[nb.n];nb.n--;for (int i = tmp.n; i > 0; i--) {tmp.key[i] = tmp.key[i - 1];}tmp.key[0] = devider;for (int i = tmp.n + 1; i > 0; i--) {tmp.child[i] = tmp.child[i - 1];}tmp.child[0] = child;tmp.n++;Remove(tmp, key);return;} else {Node lt = null;Node rt = null;boolean last = false;if (pos != x.n) {devider = x.key[pos];lt = x.child[pos];rt = x.child[pos + 1];} else {devider = x.key[pos - 1];rt = x.child[pos];lt = x.child[pos - 1];last = true;pos--;}for (int i = pos; i < x.n - 1; i++) {x.key[i] = x.key[i + 1];}for (int i = pos + 1; i < x.n; i++) {x.child[i] = x.child[i + 1];}x.n--;lt.key[lt.n++] = devider;for (int i = 0, j = lt.n; i < rt.n + 1; i++, j++) {if (i < rt.n) {lt.key[j] = rt.key[i];}lt.child[j] = rt.child[i];}lt.n += rt.n;if (x.n == 0) {if (x == root) {root = x.child[0];}x = x.child[0];}Remove(lt, key);return;}}}}public void Remove(int key) {Node x = Search(root, key);if (x == null) {return;}Remove(root, key);}public void Task(int a, int b) {Stack<Integer> st = new Stack<>();FindKeys(a, b, root, st);while (st.isEmpty() == false) {this.Remove(root, st.pop());}}private void FindKeys(int a, int b, Node x, Stack<Integer> st) {int i = 0;for (i = 0; i < x.n && x.key[i] < b; i++) {if (x.key[i] > a) {st.push(x.key[i]);}}if (!x.leaf) {for (int j = 0; j < i + 1; j++) {FindKeys(a, b, x.child[j], st);}}}public boolean Contain(int k) {if (this.Search(root, k) != null) {return true;} else {return false;}}// Show the nodeprivate void Show(Node x) {assert (x == null);for (int i = 0; i < x.n; i++) {System.out.print(x.key[i] + " ");}if (!x.leaf) {for (int i = 0; i < x.n + 1; i++) {Show(x.child[i]);}}}public static void main(String[] args) {BTree b = new BTree(3);b.Insert(8);b.Insert(9);b.Insert(10);b.Insert(11);b.Insert(15);b.Insert(20);b.Insert(17);b.Show();b.Remove(10);System.out.println();b.Show();}}
// Deleting a key from a B-tree in C
#include <stdio.h>
#include <stdlib.h>
#define MAX 3
#define MIN 2
struct BTreeNode {
int item[MAX + 1], count;
struct BTreeNode *linker[MAX + 1];
};
struct BTreeNode *root;
// Node creation
struct BTreeNode *createNode(int item, struct BTreeNode *child) {
struct BTreeNode *newNode;
newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode));
newNode->item[1] = item;
newNode->count = 1;
newNode->linker[0] = root;
newNode->linker[1] = child;
return newNode;
}
// Add value to the node
void addValToNode(int item, int pos, struct BTreeNode *node,
struct BTreeNode *child) {
int j = node->count;
while (j > pos) {
node->item[j + 1] = node->item[j];
node->linker[j + 1] = node->linker[j];
j--;
}
node->item[j + 1] = item;
node->linker[j + 1] = child;
node->count++;
}
// Split the node
void splitNode(int item, int *pval, int pos, struct BTreeNode *node,
struct BTreeNode *child, struct BTreeNode **newNode) {
int median, j;
if (pos > MIN)
median = MIN + 1;
else
median = MIN;
*newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode));
j = median + 1;
while (j <= MAX) {
(*newNode)->item[j - median] = node->item[j];
(*newNode)->linker[j - median] = node->linker[j];
j++;
}
node->count = median;
(*newNode)->count = MAX - median;
if (pos <= MIN) {
addValToNode(item, pos, node, child);
} else {
addValToNode(item, pos - median, *newNode, child);
}
*pval = node->item[node->count];
(*newNode)->linker[0] = node->linker[node->count];
node->count--;
}
// Set the value in the node
int setValueInNode(int item, int *pval,
struct BTreeNode *node, struct BTreeNode **child) {
int pos;
if (!node) {
*pval = item;
*child = NULL;
return 1;
}
if (item < node->item[1]) {
pos = 0;
} else {
for (pos = node->count;
(item < node->item[pos] && pos > 1); pos--)
;
if (item == node->item[pos]) {
printf("Duplicates not allowed\n");
return 0;
}
}
if (setValueInNode(item, pval, node->linker[pos], child)) {
if (node->count < MAX) {
addValToNode(*pval, pos, node, *child);
} else {
splitNode(*pval, pval, pos, node, *child, child);
return 1;
}
}
return 0;
}
// Insertion operation
void insertion(int item) {
int flag, i;
struct BTreeNode *child;
flag = setValueInNode(item, &i, root, &child);
if (flag)
root = createNode(i, child);
}
// Copy the successor
void copySuccessor(struct BTreeNode *myNode, int pos) {
struct BTreeNode *dummy;
dummy = myNode->linker[pos];
for (; dummy->linker[0] != NULL;)
dummy = dummy->linker[0];
myNode->item[pos] = dummy->item[1];
}
// Remove the value
void removeVal(struct BTreeNode *myNode, int pos) {
int i = pos + 1;
while (i <= myNode->count) {
myNode->item[i - 1] = myNode->item[i];
myNode->linker[i - 1] = myNode->linker[i];
i++;
}
myNode->count--;
}
// Do right shift
void rightShift(struct BTreeNode *myNode, int pos) {
struct BTreeNode *x = myNode->linker[pos];
int j = x->count;
while (j > 0) {
x->item[j + 1] = x->item[j];
x->linker[j + 1] = x->linker[j];
}
x->item[1] = myNode->item[pos];
x->linker[1] = x->linker[0];
x->count++;
x = myNode->linker[pos - 1];
myNode->item[pos] = x->item[x->count];
myNode->linker[pos] = x->linker[x->count];
x->count--;
return;
}
// Do left shift
void leftShift(struct BTreeNode *myNode, int pos) {
int j = 1;
struct BTreeNode *x = myNode->linker[pos - 1];
x->count++;
x->item[x->count] = myNode->item[pos];
x->linker[x->count] = myNode->linker[pos]->linker[0];
x = myNode->linker[pos];
myNode->item[pos] = x->item[1];
x->linker[0] = x->linker[1];
x->count--;
while (j <= x->count) {
x->item[j] = x->item[j + 1];
x->linker[j] = x->linker[j + 1];
j++;
}
return;
}
// Merge the nodes
void mergeNodes(struct BTreeNode *myNode, int pos) {
int j = 1;
struct BTreeNode *x1 = myNode->linker[pos], *x2 = myNode->linker[pos - 1];
x2->count++;
x2->item[x2->count] = myNode->item[pos];
x2->linker[x2->count] = myNode->linker[0];
while (j <= x1->count) {
x2->count++;
x2->item[x2->count] = x1->item[j];
x2->linker[x2->count] = x1->linker[j];
j++;
}
j = pos;
while (j < myNode->count) {
myNode->item[j] = myNode->item[j + 1];
myNode->linker[j] = myNode->linker[j + 1];
j++;
}
myNode->count--;
free(x1);
}
// Adjust the node
void adjustNode(struct BTreeNode *myNode, int pos) {
if (!pos) {
if (myNode->linker[1]->count > MIN) {
leftShift(myNode, 1);
} else {
mergeNodes(myNode, 1);
}
} else {
if (myNode->count != pos) {
if (myNode->linker[pos - 1]->count > MIN) {
rightShift(myNode, pos);
} else {
if (myNode->linker[pos + 1]->count > MIN) {
leftShift(myNode, pos + 1);
} else {
mergeNodes(myNode, pos);
}
}
} else {
if (myNode->linker[pos - 1]->count > MIN)
rightShift(myNode, pos);
else
mergeNodes(myNode, pos);
}
}
}
// Delete a value from the node
int delValFromNode(int item, struct BTreeNode *myNode) {
int pos, flag = 0;
if (myNode) {
if (item < myNode->item[1]) {
pos = 0;
flag = 0;
} else {
for (pos = myNode->count; (item < myNode->item[pos] && pos > 1); pos--)
;
if (item == myNode->item[pos]) {
flag = 1;
} else {
flag = 0;
}
}
if (flag) {
if (myNode->linker[pos - 1]) {
copySuccessor(myNode, pos);
flag = delValFromNode(myNode->item[pos], myNode->linker[pos]);
if (flag == 0) {
printf("Given data is not present in B-Tree\n");
}
} else {
removeVal(myNode, pos);
}
} else {
flag = delValFromNode(item, myNode->linker[pos]);
}
if (myNode->linker[pos]) {
if (myNode->linker[pos]->count < MIN)
adjustNode(myNode, pos);
}
}
return flag;
}
// Delete operaiton
void delete (int item, struct BTreeNode *myNode) {
struct BTreeNode *tmp;
if (!delValFromNode(item, myNode)) {
printf("Not present\n");
return;
} else {
if (myNode->count == 0) {
tmp = myNode;
myNode = myNode->linker[0];
free(tmp);
}
}
root = myNode;
return;
}
void searching(int item, int *pos, struct BTreeNode *myNode) {
if (!myNode) {
return;
}
if (item < myNode->item[1]) {
*pos = 0;
} else {
for (*pos = myNode->count;
(item < myNode->item[*pos] && *pos > 1); (*pos)--)
;
if (item == myNode->item[*pos]) {
printf("%d present in B-tree", item);
return;
}
}
searching(item, pos, myNode->linker[*pos]);
return;
}
void traversal(struct BTreeNode *myNode) {
int i;
if (myNode) {
for (i = 0; i < myNode->count; i++) {
traversal(myNode->linker[i]);
printf("%d ", myNode->item[i + 1]);
}
traversal(myNode->linker[i]);
}
}
int main() {
int item, ch;
insertion(8);
insertion(9);
insertion(10);
insertion(11);
insertion(15);
insertion(16);
insertion(17);
insertion(18);
insertion(20);
insertion(23);
traversal(root);
delete (20, root);
printf("\n");
traversal(root);
}
// Deleting a key from a B-tree in C++
#include <iostream>
using namespace std;
class BTreeNode {
int *keys;
int t;
BTreeNode **C;
int n;
bool leaf;
public:
BTreeNode(int _t, bool _leaf);
void traverse();
int findKey(int k);
void insertNonFull(int k);
void splitChild(int i, BTreeNode *y);
void deletion(int k);
void removeFromLeaf(int idx);
void removeFromNonLeaf(int idx);
int getPredecessor(int idx);
int getSuccessor(int idx);
void fill(int idx);
void borrowFromPrev(int idx);
void borrowFromNext(int idx);
void merge(int idx);
friend class BTree;
};
class BTree {
BTreeNode *root;
int t;
public:
BTree(int _t) {
root = NULL;
t = _t;
}
void traverse() {
if (root != NULL)
root->traverse();
}
void insertion(int k);
void deletion(int k);
};
// B tree node
BTreeNode::BTreeNode(int t1, bool leaf1) {
t = t1;
leaf = leaf1;
keys = new int[2 * t - 1];
C = new BTreeNode *[2 * t];
n = 0;
}
// Find the key
int BTreeNode::findKey(int k) {
int idx = 0;
while (idx < n && keys[idx] < k)
++idx;
return idx;
}
// Deletion operation
void BTreeNode::deletion(int k) {
int idx = findKey(k);
if (idx < n && keys[idx] == k) {
if (leaf)
removeFromLeaf(idx);
else
removeFromNonLeaf(idx);
} else {
if (leaf) {
cout << "The key " << k << " is does not exist in the tree\n";
return;
}
bool flag = ((idx == n) ? true : false);
if (C[idx]->n < t)
fill(idx);
if (flag && idx > n)
C[idx - 1]->deletion(k);
else
C[idx]->deletion(k);
}
return;
}
// Remove from the leaf
void BTreeNode::removeFromLeaf(int idx) {
for (int i = idx + 1; i < n; ++i)
keys[i - 1] = keys[i];
n--;
return;
}
// Delete from non leaf node
void BTreeNode::removeFromNonLeaf(int idx) {
int k = keys[idx];
if (C[idx]->n >= t) {
int pred = getPredecessor(idx);
keys[idx] = pred;
C[idx]->deletion(pred);
}
else if (C[idx + 1]->n >= t) {
int succ = getSuccessor(idx);
keys[idx] = succ;
C[idx + 1]->deletion(succ);
}
else {
merge(idx);
C[idx]->deletion(k);
}
return;
}
int BTreeNode::getPredecessor(int idx) {
BTreeNode *cur = C[idx];
while (!cur->leaf)
cur = cur->C[cur->n];
return cur->keys[cur->n - 1];
}
int BTreeNode::getSuccessor(int idx) {
BTreeNode *cur = C[idx + 1];
while (!cur->leaf)
cur = cur->C[0];
return cur->keys[0];
}
void BTreeNode::fill(int idx) {
if (idx != 0 && C[idx - 1]->n >= t)
borrowFromPrev(idx);
else if (idx != n && C[idx + 1]->n >= t)
borrowFromNext(idx);
else {
if (idx != n)
merge(idx);
else
merge(idx - 1);
}
return;
}
// Borrow from previous
void BTreeNode::borrowFromPrev(int idx) {
BTreeNode *child = C[idx];
BTreeNode *sibling = C[idx - 1];
for (int i = child->n - 1; i >= 0; --i)
child->keys[i + 1] = child->keys[i];
if (!child->leaf) {
for (int i = child->n; i >= 0; --i)
child->C[i + 1] = child->C[i];
}
child->keys[0] = keys[idx - 1];
if (!child->leaf)
child->C[0] = sibling->C[sibling->n];
keys[idx - 1] = sibling->keys[sibling->n - 1];
child->n += 1;
sibling->n -= 1;
return;
}
// Borrow from the next
void BTreeNode::borrowFromNext(int idx) {
BTreeNode *child = C[idx];
BTreeNode *sibling = C[idx + 1];
child->keys[(child->n)] = keys[idx];
if (!(child->leaf))
child->C[(child->n) + 1] = sibling->C[0];
keys[idx] = sibling->keys[0];
for (int i = 1; i < sibling->n; ++i)
sibling->keys[i - 1] = sibling->keys[i];
if (!sibling->leaf) {
for (int i = 1; i <= sibling->n; ++i)
sibling->C[i - 1] = sibling->C[i];
}
child->n += 1;
sibling->n -= 1;
return;
}
// Merge
void BTreeNode::merge(int idx) {
BTreeNode *child = C[idx];
BTreeNode *sibling = C[idx + 1];
child->keys[t - 1] = keys[idx];
for (int i = 0; i < sibling->n; ++i)
child->keys[i + t] = sibling->keys[i];
if (!child->leaf) {
for (int i = 0; i <= sibling->n; ++i)
child->C[i + t] = sibling->C[i];
}
for (int i = idx + 1; i < n; ++i)
keys[i - 1] = keys[i];
for (int i = idx + 2; i <= n; ++i)
C[i - 1] = C[i];
child->n += sibling->n + 1;
n--;
delete (sibling);
return;
}
// Insertion operation
void BTree::insertion(int k) {
if (root == NULL) {
root = new BTreeNode(t, true);
root->keys[0] = k;
root->n = 1;
} else {
if (root->n == 2 * t - 1) {
BTreeNode *s = new BTreeNode(t, false);
s->C[0] = root;
s->splitChild(0, root);
int i = 0;
if (s->keys[0] < k)
i++;
s->C[i]->insertNonFull(k);
root = s;
} else
root->insertNonFull(k);
}
}
// Insertion non full
void BTreeNode::insertNonFull(int k) {
int i = n - 1;
if (leaf == true) {
while (i >= 0 && keys[i] > k) {
keys[i + 1] = keys[i];
i--;
}
keys[i + 1] = k;
n = n + 1;
} else {
while (i >= 0 && keys[i] > k)
i--;
if (C[i + 1]->n == 2 * t - 1) {
splitChild(i + 1, C[i + 1]);
if (keys[i + 1] < k)
i++;
}
C[i + 1]->insertNonFull(k);
}
}
// Split child
void BTreeNode::splitChild(int i, BTreeNode *y) {
BTreeNode *z = new BTreeNode(y->t, y->leaf);
z->n = t - 1;
for (int j = 0; j < t - 1; j++)
z->keys[j] = y->keys[j + t];
if (y->leaf == false) {
for (int j = 0; j < t; j++)
z->C[j] = y->C[j + t];
}
y->n = t - 1;
for (int j = n; j >= i + 1; j--)
C[j + 1] = C[j];
C[i + 1] = z;
for (int j = n - 1; j >= i; j--)
keys[j + 1] = keys[j];
keys[i] = y->keys[t - 1];
n = n + 1;
}
// Traverse
void BTreeNode::traverse() {
int i;
for (i = 0; i < n; i++) {
if (leaf == false)
C[i]->traverse();
cout << " " << keys[i];
}
if (leaf == false)
C[i]->traverse();
}
// Delete Operation
void BTree::deletion(int k) {
if (!root) {
cout << "The tree is empty\n";
return;
}
root->deletion(k);
if (root->n == 0) {
BTreeNode *tmp = root;
if (root->leaf)
root = NULL;
else
root = root->C[0];
delete tmp;
}
return;
}
int main() {
BTree t(3);
t.insertion(8);
t.insertion(9);
t.insertion(10);
t.insertion(11);
t.insertion(15);
t.insertion(16);
t.insertion(17);
t.insertion(18);
t.insertion(20);
t.insertion(23);
cout << "The B-tree is: ";
t.traverse();
t.deletion(20);
cout << "\nThe B-tree is: ";
t.traverse();
}
删除复杂度
最佳情况时间复杂度:Θ(log n)
平均情况空间复杂度:Θ(n)
最坏情况的空间复杂度:Θ(n)
