在本教程中,您将学习什么是双端队列(双端队列)。 另外,您还将找到在 C,C++ ,Java 和 Python 的双端队列上进行不同操作的工作示例。
双端队列是队列的一种,其中元素的插入和删除可以从前面或后面进行。 因此,它不遵循 FIFO 规则(先进先出)。
双端队列
双端队列的类型
- 输入限制双端队列
在此双端队列中,输入在一端限制,但允许在两端删除。 - 输出限制双端队列
在此双端队列中,输出限制在一个端部,但允许在两端插入。
双端队列操作
下面是循环双端数组实现的双端队列。 在圆形数组中,如果数组已满,我们将从头开始。
但是在线性数组实现中,如果数组已满,则无法插入更多元素。 在下面的每个操作中,如果数组已满,则会引发“溢出消息”。
在执行以下操作之前,请执行以下步骤。
- 取大小为
n
的数组。 - 在第一个位置设置两个指针,然后设置
front = -1
和rear = 0
。
初始化数组和指针
在前面插入
此操作在前面添加了一个元素。
检查前面的位置。
检查正面如果为
front < 1
,请重新初始化front = n-1
(最后一个索引)。
前端发送否则,将
front
减小 1。将新键
5
添加到array[front]
中。
插入键
在后面插入
此操作在后部增加了一个元素。
检查数组是否已满。
检查完整的如果数组已满,请重新初始化
rear = 0
。否则,将
rear
增加 1。
增加后将新键
5
添加到array[rear]
中。
插入键
从前面删除
该操作从前面删除一个元素。
检查数组是否为空。
检查为空如果数组为空(即
front = -1
),则无法执行删除操作(下溢条件)。如果双端队列只有一个元素(即
front = rear
),请设置front = -1
和rear = -1
。否则,如果
front
位于末尾(即front = n - 1
),则设置转到前front = 0
。否则,
front = front + 1
。
增加前线
从后面删除
此操作从背面删除一个元素。
检查数组是否为空。
检查为空如果数组为空(即
front = -1
),则无法执行删除操作(下溢条件)。如果双端队列只有一个元素(即
front = rear
),请设置front = -1
和rear = -1
,否则请按照以下步骤操作。如果
rear
在前面(即rear = 0
),则设置转到前rear = n - 1
。否则,
rear = rear - 1
。
降低后排
检查空
此操作检查数组是否为空。 如果为front = -1
,则双端队列为空。
检查满
此操作检查双端队列是否已满。 如果front = 0
和rear = n - 1
,则双端队列已满。
Python,Java 和 C/C++ 示例
# Deque operations in python
class Deque:
def __init__(self):
self.items = []
def isEmpty(self):
return self.items == []
def addFront(self, item):
self.items.append(item)
def addRear(self, item):
self.items.insert(0, item)
def removeFront(self):
return self.items.pop()
def removeRear(self):
return self.items.pop(0)
def size(self):
return len(self.items)
d = Deque()
print(d.isEmpty())
d.addRear(8)
d.addRear(5)
d.addFront(7)
d.addFront(10)
print(d.size())
print(d.isEmpty())
d.addRear(11)
print(d.removeRear())
print(d.removeFront())
d.addFront(55)
d.addRear(45)
print(d.items)
// Deque operations in Java
class Deque {
static final int MAX = 100;
int arr[];
int front;
int rear;
int size;
public Deque(int size) {
arr = new int[MAX];
front = -1;
rear = 0;
this.size = size;
}
boolean isFull() {
return ((front == 0 && rear == size - 1) || front == rear + 1);
}
boolean isEmpty() {
return (front == -1);
}
void insertfront(int key) {
if (isFull()) {
System.out.println("Overflow");
return;
}
if (front == -1) {
front = 0;
rear = 0;
}
else if (front == 0)
front = size - 1;
else
front = front - 1;
arr[front] = key;
}
void insertrear(int key) {
if (isFull()) {
System.out.println(" Overflow ");
return;
}
if (front == -1) {
front = 0;
rear = 0;
}
else if (rear == size - 1)
rear = 0;
else
rear = rear + 1;
arr[rear] = key;
}
void deletefront() {
if (isEmpty()) {
System.out.println("Queue Underflow\n");
return;
}
// Deque has only one element
if (front == rear) {
front = -1;
rear = -1;
} else if (front == size - 1)
front = 0;
else
front = front + 1;
}
void deleterear() {
if (isEmpty()) {
System.out.println(" Underflow");
return;
}
if (front == rear) {
front = -1;
rear = -1;
} else if (rear == 0)
rear = size - 1;
else
rear = rear - 1;
}
int getFront() {
if (isEmpty()) {
System.out.println(" Underflow");
return -1;
}
return arr[front];
}
int getRear() {
if (isEmpty() || rear < 0) {
System.out.println(" Underflow\n");
return -1;
}
return arr[rear];
}
public static void main(String[] args) {
Deque dq = new Deque(4);
System.out.println("Insert element at rear end : 12 ");
dq.insertrear(12);
System.out.println("insert element at rear end : 14 ");
dq.insertrear(14);
System.out.println("get rear element : " + dq.getRear());
dq.deleterear();
System.out.println("After delete rear element new rear become : " + dq.getRear());
System.out.println("inserting element at front end");
dq.insertfront(13);
System.out.println("get front element: " + dq.getFront());
dq.deletefront();
System.out.println("After delete front element new front become : " + +dq.getFront());
}
}
// Deque operations in C
#include <stdio.h>
#define MAX 10
void addFront(int *, int, int *, int *);
void addRear(int *, int, int *, int *);
int delFront(int *, int *, int *);
int delRear(int *, int *, int *);
void display(int *);
int count(int *);
int main()
{
int arr[MAX];
int front, rear, i, n;
front = rear = -1;
for (i = 0; i < MAX; i++)
arr[i] = 0;
addRear(arr, 5, &front, &rear);
addFront(arr, 12, &front, &rear);
addRear(arr, 11, &front, &rear);
addFront(arr, 5, &front, &rear);
addRear(arr, 6, &front, &rear);
addFront(arr, 8, &front, &rear);
printf("\nElements in a deque: ");
display(arr);
i = delFront(arr, &front, &rear);
printf("\nremoved item: %d", i);
printf("\nElements in a deque after deletion: ");
display(arr);
addRear(arr, 16, &front, &rear);
addRear(arr, 7, &front, &rear);
printf("\nElements in a deque after addition: ");
display(arr);
i = delRear(arr, &front, &rear);
printf("\nremoved item: %d", i);
printf("\nElements in a deque after deletion: ");
display(arr);
n = count(arr);
printf("\nTotal number of elements in deque: %d", n);
}
void addFront(int *arr, int item, int *pfront, int *prear)
{
int i, k, c;
if (*pfront == 0 && *prear == MAX - 1)
{
printf("\nDeque is full.\n");
return;
}
if (*pfront == -1)
{
*pfront = *prear = 0;
arr[*pfront] = item;
return;
}
if (*prear != MAX - 1)
{
c = count(arr);
k = *prear + 1;
for (i = 1; i <= c; i++)
{
arr[k] = arr[k - 1];
k--;
}
arr[k] = item;
*pfront = k;
(*prear)++;
}
else
{
(*pfront)--;
arr[*pfront] = item;
}
}
void addRear(int *arr, int item, int *pfront, int *prear)
{
int i, k;
if (*pfront == 0 && *prear == MAX - 1)
{
printf("\nDeque is full.\n");
return;
}
if (*pfront == -1)
{
*prear = *pfront = 0;
arr[*prear] = item;
return;
}
if (*prear == MAX - 1)
{
k = *pfront - 1;
for (i = *pfront - 1; i < *prear; i++)
{
k = i;
if (k == MAX - 1)
arr[k] = 0;
else
arr[k] = arr[i + 1];
}
(*prear)--;
(*pfront)--;
}
(*prear)++;
arr[*prear] = item;
}
int delFront(int *arr, int *pfront, int *prear)
{
int item;
if (*pfront == -1)
{
printf("\nDeque is empty.\n");
return 0;
}
item = arr[*pfront];
arr[*pfront] = 0;
if (*pfront == *prear)
*pfront = *prear = -1;
else
(*pfront)++;
return item;
}
int delRear(int *arr, int *pfront, int *prear)
{
int item;
if (*pfront == -1)
{
printf("\nDeque is empty.\n");
return 0;
}
item = arr[*prear];
arr[*prear] = 0;
(*prear)--;
if (*prear == -1)
*pfront = -1;
return item;
}
void display(int *arr)
{
int i;
printf("\n front: ");
for (i = 0; i < MAX; i++)
printf(" %d", arr[i]);
printf(" :rear");
}
int count(int *arr)
{
int c = 0, i;
for (i = 0; i < MAX; i++)
{
if (arr[i] != 0)
c++;
}
return c;
}
// Deque operations in C++
#include <iostream>
using namespace std;
#define MAX 10
class Deque
{
int arr[MAX];
int front;
int rear;
int size;
public:
Deque(int size)
{
front = -1;
rear = 0;
this->size = size;
}
void insertfront(int key);
void insertrear(int key);
void deletefront();
void deleterear();
bool isFull();
bool isEmpty();
int getFront();
int getRear();
};
bool Deque::isFull()
{
return ((front == 0 && rear == size - 1) ||
front == rear + 1);
}
bool Deque::isEmpty()
{
return (front == -1);
}
void Deque::insertfront(int key)
{
if (isFull())
{
cout << "Overflow\n"
<< endl;
return;
}
if (front == -1)
{
front = 0;
rear = 0;
}
else if (front == 0)
front = size - 1;
else
front = front - 1;
arr[front] = key;
}
void Deque ::insertrear(int key)
{
if (isFull())
{
cout << " Overflow\n " << endl;
return;
}
if (front == -1)
{
front = 0;
rear = 0;
}
else if (rear == size - 1)
rear = 0;
else
rear = rear + 1;
arr[rear] = key;
}
void Deque ::deletefront()
{
if (isEmpty())
{
cout << "Queue Underflow\n"
<< endl;
return;
}
if (front == rear)
{
front = -1;
rear = -1;
}
else if (front == size - 1)
front = 0;
else
front = front + 1;
}
void Deque::deleterear()
{
if (isEmpty())
{
cout << " Underflow\n"
<< endl;
return;
}
if (front == rear)
{
front = -1;
rear = -1;
}
else if (rear == 0)
rear = size - 1;
else
rear = rear - 1;
}
int Deque::getFront()
{
if (isEmpty())
{
cout << " Underflow\n"
<< endl;
return -1;
}
return arr[front];
}
int Deque::getRear()
{
if (isEmpty() || rear < 0)
{
cout << " Underflow\n"
<< endl;
return -1;
}
return arr[rear];
}
int main()
{
Deque dq(4);
cout << "insert element at rear end \n";
dq.insertrear(5);
dq.insertrear(11);
cout << "rear element: "
<< dq.getRear() << endl;
dq.deleterear();
cout << "after deletion of the rear element, the new rear element: " << dq.getRear() << endl;
cout << "insert element at front end \n";
dq.insertfront(8);
cout << "front element: " << dq.getFront() << endl;
dq.deletefront();
cout << "after deletion of front element new front element: " << dq.getFront() << endl;
}
双端队列复杂度
所有上述操作的时间复杂度是恒定的,即O(1)
。