在本教程中,您将学习如何将键插入 B 树。 此外,您还将找到在 C,C++ ,Java 和 Python 中将键插入 B 树的工作示例。
在 B 树上插入元素包括两个事件:搜索适当的节点来插入元素,以及拆分节点。如有必要,插入操作始终从下往上进行。
让我们在下面了解这些事件。
插入操作
- 如果树为空,请分配一个根节点并插入键。
- 更新节点中允许的键数。
- 搜索适当的节点以进行插入。
- 如果节点已满,请执行以下步骤。
- 按递增顺序插入元素。
- 现在,有一些元素超出了其限制。 因此,将中位数拆分。
- 向上推中键,将左键作为左子代,将右键作为右子代。
- 如果节点未满,请执行以下步骤。
- 按升序插入节点。
插入示例
让我们通过以下插图了解插入操作。
要插入的元素是 8、9、10、11、15、16、17、18、20、23。
将元素插入 B 树
元素插入算法
BreeInsertion(T, k)
r root[T]
if n[r] = 2t - 1
s = AllocateNode()
root[T] = s
leaf[s] = FALSE
n[s] <- 0
c1[s] <- r
BtreeSplitChild(s, 1, r)
BtreeInsertNonFull(s, k)
else BtreeInsertNonFull(r, k)
BtreeInsertNonFull(x, k)
i = n[x]
if leaf[x]
while i ≥ 1 and k < keyi[x]
keyi+1 [x] = keyi[x]
i = i - 1
keyi+1[x] = k
n[x] = n[x] + 1
else while i ≥ 1 and k < keyi[x]
i = i - 1
i = i + 1
if n[ci[x]] == 2t - 1
BtreeSplitChild(x, i, ci[x])
if k &rt; keyi[x]
i = i + 1
BtreeInsertNonFull(ci[x], k)
BtreeSplitChild(x, i)
BtreeSplitChild(x, i, y)
z = AllocateNode()
leaf[z] = leaf[y]
n[z] = t - 1
for j = 1 to t - 1
keyj[z] = keyj+t[y]
if not leaf [y]
for j = 1 to t
cj[z] = cj + t[y]
n[y] = t - 1
for j = n[x] + 1 to i + 1
cj+1[x] = cj[x]
ci+1[x] = z
for j = n[x] to i
keyj+1[x] = keyj[x]
keyi[x] = keyt[y]
n[x] = n[x] + 1
Python,Java 和 C/C++ 示例
# Inserting a key on a B-tree in Python
# Create a node
class BTreeNode:
def __init__(self, leaf=False):
self.leaf = leaf
self.keys = []
self.child = []
# Tree
class BTree:
def __init__(self, t):
self.root = BTreeNode(True)
self.t = t
# Insert node
def insert(self, k):
root = self.root
if len(root.keys) == (2 * self.t) - 1:
temp = BTreeNode()
self.root = temp
temp.child.insert(0, root)
self.split_child(temp, 0)
self.insert_non_full(temp, k)
else:
self.insert_non_full(root, k)
# Insert nonfull
def insert_non_full(self, x, k):
i = len(x.keys) - 1
if x.leaf:
x.keys.append((None, None))
while i >= 0 and k[0] < x.keys[i][0]:
x.keys[i + 1] = x.keys[i]
i -= 1
x.keys[i + 1] = k
else:
while i >= 0 and k[0] < x.keys[i][0]:
i -= 1
i += 1
if len(x.child[i].keys) == (2 * self.t) - 1:
self.split_child(x, i)
if k[0] > x.keys[i][0]:
i += 1
self.insert_non_full(x.child[i], k)
# Split the child
def split_child(self, x, i):
t = self.t
y = x.child[i]
z = BTreeNode(y.leaf)
x.child.insert(i + 1, z)
x.keys.insert(i, y.keys[t - 1])
z.keys = y.keys[t: (2 * t) - 1]
y.keys = y.keys[0: t - 1]
if not y.leaf:
z.child = y.child[t: 2 * t]
y.child = y.child[0: t - 1]
# Print the tree
def print_tree(self, x, l=0):
print("Level ", l, " ", len(x.keys), end=":")
for i in x.keys:
print(i, end=" ")
print()
l += 1
if len(x.child) > 0:
for i in x.child:
self.print_tree(i, l)
def main():
B = BTree(3)
for i in range(10):
B.insert((i, 2 * i))
B.print_tree(B.root)
if __name__ == '__main__':
main()
// Inserting a key on a B-tree in Java
public class BTree {
private int T;
// Node Creation
public class Node {
int n;
int key[] = new int[2 * T - 1];
Node child[] = new Node[2 * T];
boolean leaf = true;
public int Find(int k) {
for (int i = 0; i < this.n; i++) {
if (this.key[i] == k) {
return i;
}
}
return -1;
};
}
public BTree(int t) {
T = t;
root = new Node();
root.n = 0;
root.leaf = true;
}
private Node root;
// split
private void split(Node x, int pos, Node y) {
Node z = new Node();
z.leaf = y.leaf;
z.n = T - 1;
for (int j = 0; j < T - 1; j++) {
z.key[j] = y.key[j + T];
}
if (!y.leaf) {
for (int j = 0; j < T; j++) {
z.child[j] = y.child[j + T];
}
}
y.n = T - 1;
for (int j = x.n; j >= pos + 1; j--) {
x.child[j + 1] = x.child[j];
}
x.child[pos + 1] = z;
for (int j = x.n - 1; j >= pos; j--) {
x.key[j + 1] = x.key[j];
}
x.key[pos] = y.key[T - 1];
x.n = x.n + 1;
}
// insert key
public void insert(final int key) {
Node r = root;
if (r.n == 2 * T - 1) {
Node s = new Node();
root = s;
s.leaf = false;
s.n = 0;
s.child[0] = r;
split(s, 0, r);
_insert(s, key);
} else {
_insert(r, key);
}
}
// insert node
final private void _insert(Node x, int k) {
if (x.leaf) {
int i = 0;
for (i = x.n - 1; i >= 0 && k < x.key[i]; i--) {
x.key[i + 1] = x.key[i];
}
x.key[i + 1] = k;
x.n = x.n + 1;
} else {
int i = 0;
for (i = x.n - 1; i >= 0 && k < x.key[i]; i--) {
}
;
i++;
Node tmp = x.child[i];
if (tmp.n == 2 * T - 1) {
split(x, i, tmp);
if (k > x.key[i]) {
i++;
}
}
_insert(x.child[i], k);
}
}
public void display() {
display(root);
}
// Display the tree
private void display(Node x) {
assert (x == null);
for (int i = 0; i < x.n; i++) {
System.out.print(x.key[i] + " ");
}
if (!x.leaf) {
for (int i = 0; i < x.n + 1; i++) {
display(x.child[i]);
}
}
}
public static void main(String[] args) {
BTree b = new BTree(3);
b.insert(8);
b.insert(9);
b.insert(10);
b.insert(11);
b.insert(15);
b.insert(20);
b.insert(17);
b.display();
}
}
// insertioning a key on a B-tree in C
#include <stdio.h>
#include <stdlib.h>
#define MAX 3
#define MIN 2
struct btreeNode {
int item[MAX + 1], count;
struct btreeNode *link[MAX + 1];
};
struct btreeNode *root;
// Node creation
struct btreeNode *createNode(int item, struct btreeNode *child) {
struct btreeNode *newNode;
newNode = (struct btreeNode *)malloc(sizeof(struct btreeNode));
newNode->item[1] = item;
newNode->count = 1;
newNode->link[0] = root;
newNode->link[1] = child;
return newNode;
}
// Insert
void insertValue(int item, int pos, struct btreeNode *node,
struct btreeNode *child) {
int j = node->count;
while (j > pos) {
node->item[j + 1] = node->item[j];
node->link[j + 1] = node->link[j];
j--;
}
node->item[j + 1] = item;
node->link[j + 1] = child;
node->count++;
}
// Split node
void splitNode(int item, int *pval, int pos, struct btreeNode *node,
struct btreeNode *child, struct btreeNode **newNode) {
int median, j;
if (pos > MIN)
median = MIN + 1;
else
median = MIN;
*newNode = (struct btreeNode *)malloc(sizeof(struct btreeNode));
j = median + 1;
while (j <= MAX) {
(*newNode)->item[j - median] = node->item[j];
(*newNode)->link[j - median] = node->link[j];
j++;
}
node->count = median;
(*newNode)->count = MAX - median;
if (pos <= MIN) {
insertValue(item, pos, node, child);
} else {
insertValue(item, pos - median, *newNode, child);
}
*pval = node->item[node->count];
(*newNode)->link[0] = node->link[node->count];
node->count--;
}
// Set the value of node
int setNodeValue(int item, int *pval,
struct btreeNode *node, struct btreeNode **child) {
int pos;
if (!node) {
*pval = item;
*child = NULL;
return 1;
}
if (item < node->item[1]) {
pos = 0;
} else {
for (pos = node->count;
(item < node->item[pos] && pos > 1); pos--)
;
if (item == node->item[pos]) {
printf("Duplicates not allowed\n");
return 0;
}
}
if (setNodeValue(item, pval, node->link[pos], child)) {
if (node->count < MAX) {
insertValue(*pval, pos, node, *child);
} else {
splitNode(*pval, pval, pos, node, *child, child);
return 1;
}
}
return 0;
}
// Insert the value
void insertion(int item) {
int flag, i;
struct btreeNode *child;
flag = setNodeValue(item, &i, root, &child);
if (flag)
root = createNode(i, child);
}
// Copy the successor
void copySuccessor(struct btreeNode *myNode, int pos) {
struct btreeNode *dummy;
dummy = myNode->link[pos];
for (; dummy->link[0] != NULL;)
dummy = dummy->link[0];
myNode->item[pos] = dummy->item[1];
}
// Do rightshift
void rightShift(struct btreeNode *myNode, int pos) {
struct btreeNode *x = myNode->link[pos];
int j = x->count;
while (j > 0) {
x->item[j + 1] = x->item[j];
x->link[j + 1] = x->link[j];
}
x->item[1] = myNode->item[pos];
x->link[1] = x->link[0];
x->count++;
x = myNode->link[pos - 1];
myNode->item[pos] = x->item[x->count];
myNode->link[pos] = x->link[x->count];
x->count--;
return;
}
// Do leftshift
void leftShift(struct btreeNode *myNode, int pos) {
int j = 1;
struct btreeNode *x = myNode->link[pos - 1];
x->count++;
x->item[x->count] = myNode->item[pos];
x->link[x->count] = myNode->link[pos]->link[0];
x = myNode->link[pos];
myNode->item[pos] = x->item[1];
x->link[0] = x->link[1];
x->count--;
while (j <= x->count) {
x->item[j] = x->item[j + 1];
x->link[j] = x->link[j + 1];
j++;
}
return;
}
// Merge the nodes
void mergeNodes(struct btreeNode *myNode, int pos) {
int j = 1;
struct btreeNode *x1 = myNode->link[pos], *x2 = myNode->link[pos - 1];
x2->count++;
x2->item[x2->count] = myNode->item[pos];
x2->link[x2->count] = myNode->link[0];
while (j <= x1->count) {
x2->count++;
x2->item[x2->count] = x1->item[j];
x2->link[x2->count] = x1->link[j];
j++;
}
j = pos;
while (j < myNode->count) {
myNode->item[j] = myNode->item[j + 1];
myNode->link[j] = myNode->link[j + 1];
j++;
}
myNode->count--;
free(x1);
}
// Adjust the node
void adjustNode(struct btreeNode *myNode, int pos) {
if (!pos) {
if (myNode->link[1]->count > MIN) {
leftShift(myNode, 1);
} else {
mergeNodes(myNode, 1);
}
} else {
if (myNode->count != pos) {
if (myNode->link[pos - 1]->count > MIN) {
rightShift(myNode, pos);
} else {
if (myNode->link[pos + 1]->count > MIN) {
leftShift(myNode, pos + 1);
} else {
mergeNodes(myNode, pos);
}
}
} else {
if (myNode->link[pos - 1]->count > MIN)
rightShift(myNode, pos);
else
mergeNodes(myNode, pos);
}
}
}
// Traverse the tree
void traversal(struct btreeNode *myNode) {
int i;
if (myNode) {
for (i = 0; i < myNode->count; i++) {
traversal(myNode->link[i]);
printf("%d ", myNode->item[i + 1]);
}
traversal(myNode->link[i]);
}
}
int main() {
int item, ch;
insertion(8);
insertion(9);
insertion(10);
insertion(11);
insertion(15);
insertion(16);
insertion(17);
insertion(18);
insertion(20);
insertion(23);
traversal(root);
}
// Inserting a key on a B-tree in C++
#include <iostream>
using namespace std;
class Node {
int *keys;
int t;
Node **C;
int n;
bool leaf;
public:
Node(int _t, bool _leaf);
void insertNonFull(int k);
void splitChild(int i, Node *y);
void traverse();
friend class BTree;
};
class BTree {
Node *root;
int t;
public:
BTree(int _t) {
root = NULL;
t = _t;
}
void traverse() {
if (root != NULL)
root->traverse();
}
void insert(int k);
};
Node::Node(int t1, bool leaf1) {
t = t1;
leaf = leaf1;
keys = new int[2 * t - 1];
C = new Node *[2 * t];
n = 0;
}
// Traverse the nodes
void Node::traverse() {
int i;
for (i = 0; i < n; i++) {
if (leaf == false)
C[i]->traverse();
cout << " " << keys[i];
}
if (leaf == false)
C[i]->traverse();
}
// Insert the node
void BTree::insert(int k) {
if (root == NULL) {
root = new Node(t, true);
root->keys[0] = k;
root->n = 1;
} else {
if (root->n == 2 * t - 1) {
Node *s = new Node(t, false);
s->C[0] = root;
s->splitChild(0, root);
int i = 0;
if (s->keys[0] < k)
i++;
s->C[i]->insertNonFull(k);
root = s;
} else
root->insertNonFull(k);
}
}
// Insert non full condition
void Node::insertNonFull(int k) {
int i = n - 1;
if (leaf == true) {
while (i >= 0 && keys[i] > k) {
keys[i + 1] = keys[i];
i--;
}
keys[i + 1] = k;
n = n + 1;
} else {
while (i >= 0 && keys[i] > k)
i--;
if (C[i + 1]->n == 2 * t - 1) {
splitChild(i + 1, C[i + 1]);
if (keys[i + 1] < k)
i++;
}
C[i + 1]->insertNonFull(k);
}
}
// split the child
void Node::splitChild(int i, Node *y) {
Node *z = new Node(y->t, y->leaf);
z->n = t - 1;
for (int j = 0; j < t - 1; j++)
z->keys[j] = y->keys[j + t];
if (y->leaf == false) {
for (int j = 0; j < t; j++)
z->C[j] = y->C[j + t];
}
y->n = t - 1;
for (int j = n; j >= i + 1; j--)
C[j + 1] = C[j];
C[i + 1] = z;
for (int j = n - 1; j >= i; j--)
keys[j + 1] = keys[j];
keys[i] = y->keys[t - 1];
n = n + 1;
}
int main() {
BTree t(3);
t.insert(8);
t.insert(9);
t.insert(10);
t.insert(11);
t.insert(15);
t.insert(16);
t.insert(17);
t.insert(18);
t.insert(20);
t.insert(23);
cout << "The B-tree is: ";
t.traverse();
}