自实现PCA
PCA模型封装
import numpy as npclass PCA:    def __init__(self, n_components):        """初始化PCA"""        assert n_components >= 1, "n_components must be valid"        self.n_components = n_components        self.components_ = None    def fit(self, X, eta=0.01, n_iters=1e4):        """获得数据集X的前n个主成分"""        assert self.n_components <= X.shape[1], \            "n_components must not be greater than the feature number of X"        def demean(X):            return X - np.mean(X, axis=0)        def f(w, X):            return np.sum((X.dot(w) ** 2)) / len(X)        def df(w, X):            return X.T.dot(X.dot(w)) * 2. / len(X)        def direction(w):            return w / np.linalg.norm(w)        def first_component(X, initial_w, eta=0.01, n_iters=1e4, epsilon=1e-8):            w = direction(initial_w)            cur_iter = 0            while cur_iter < n_iters:                gradient = df(w, X)                last_w = w                w = w + eta * gradient                w = direction(w)                if (abs(f(w, X) - f(last_w, X)) < epsilon):                    break                cur_iter += 1            return w        X_pca = demean(X)        self.components_ = np.empty(shape=(self.n_components, X.shape[1]))        for i in range(self.n_components):            initial_w = np.random.random(X_pca.shape[1])            w = first_component(X_pca, initial_w, eta, n_iters)            self.components_[i,:] = w            X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w        return self    def transform(self, X):        """将给定的X,映射到各个主成分分量中"""        assert X.shape[1] == self.components_.shape[1]        return X.dot(self.components_.T)    def inverse_transform(self, X):        """将给定的X,反向映射回原来的特征空间"""        assert X.shape[1] == self.components_.shape[0]        return X.dot(self.components_)    def __repr__(self):        return "PCA(n_components=%d)" % self.n_components
使用
import numpy as npimport matplotlib.pyplot as plt# 准备数据X = np.empty((100, 2))X[:,0] = np.random.uniform(0., 100., size=100)X[:,1] = 0.75 * X[:,0] + 3. + np.random.normal(0, 10., size=100)# 求解2个主成分from playML.PCA import PCApca = PCA(n_components=2)pca.fit(X)pca.components_  # array([[ 0.76676948,  0.64192256], [-0.64191827,  0.76677307]])#  求解第一主成分pca = PCA(n_components=1)pca.fit(X)# 将数据降维(高维转为低维)X_reduction = pca.transform(X)  # X_reduction.shape : (100, 1)# 将数据还原(低维转为高维)X_restore = pca.inverse_transform(X_reduction)  # X_restore.shape : (100, 2)# 可视化# # 蓝色代表原数据,红色代表降维后在第一维的数据plt.scatter(X[:,0], X[:,1], color='b', alpha=0.5)plt.scatter(X_restore[:,0], X_restore[:,1], color='r', alpha=0.5)plt.show()
scikit-learn实现PCA
from sklearn.decomposition import PCA# 降维pca = PCA(n_components=1)pca.fit(X)# 求解第一主成分pca.components_  # array([[-0.77670058, -0.62987   ]])# 将数据降维(高维转为低维)X_reduction = pca.transform(X)# 将数据还原(低维转为高维)X_restore = pca.inverse_transform(X_reduction)# 可视化# # 蓝色代表原数据,红色代表降维后在第一维的数据plt.scatter(X[:,0], X[:,1], color='b', alpha=0.5)plt.scatter(X_restore[:,0], X_restore[:,1], color='r', alpha=0.5)plt.show()
