描述
设计一个找到数据流中第 k
大元素的类(class)。注意是排序后的第 k
大元素,不是第 k
个不同的元素。
请实现 KthLargest
类:
KthLargest(int k, int[] nums)
使用整数k
和整数流nums
初始化对象。int add(int val)
将val
插入数据流nums
后,返回当前数据流中第k
大的元素。
示例
输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]
解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
提示
1 <= k <= 104
0 <= nums.length <= 104
-104 <= nums[i] <= 104
-104 <= val <= 104
- 最多调用
add
方法104
次 - 题目数据保证,在查找第
k
大元素时,数组中至少有k
个元素
解题思路
优先队列
我们可以使用一个大小为 k 的优先队列来存储前 k 大的元素,其中优先队列的队头为队列中最小的元素,也就是第 k 大的元素。
在单次插入的操作中,我们首先将元素 val 加入到优先队列中。如果此时优先队列的大小大于 k,我们需要将优先队列的队头元素弹出,以保证优先队列的大小为 k。
代码
class KthLargest {
PriorityQueue<Integer> pq;
int k;
public KthLargest(int k, int[] nums) {
this.k = k;
pq = new PriorityQueue<Integer>();
for (int x : nums) {
add(x);
}
}
public int add(int val) {
pq.offer(val);
if (pq.size() > k) {
pq.poll();
}
return pq.peek();
}
}
复杂度分析
时间复杂度:
初始化时间复杂度为:O(nlogk) ,其中 n 为初始化时 nums 的长度;
单次插入时间复杂度为:O(logk)。
空间复杂度:O(k)。需要使用优先队列存储前 k 大的元素。