描述
给定一个由 0
和 1
组成的矩阵 mat
,请输出一个大小相同的矩阵,其中每一个格子是 mat
中对应位置元素到最近的 0
的距离。
两个相邻元素间的距离为 1
。
示例
示例 1:
输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]
示例 2:
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]
提示
m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j] is either 0 or 1.
mat
中至少有一个0
解题思路
- 首先找出所有的 0,放入队列
- 然后进行广度优先搜索
代码
class Solution {
public int[][] updateMatrix(int[][] mat) {
int m = mat.length;
int n = mat[0].length;
boolean[][] seen = new boolean[m][n];
int[][] ans = new int[m][n];
Queue<int[]> queue = new LinkedList<int[]>();
int[] di = {0, 0, -1, 1};
int[] dj = {1, -1, 0, 0};
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (mat[i][j] == 0) {
seen[i][j] = true;
queue.offer(new int[]{i ,j});
}
}
}
while (!queue.isEmpty()) {
int[] cell = queue.poll();
int cur_i = cell[0], cur_j = cell[1];
for (int index = 0; index < 4; index++) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
if (next_i >= 0 && next_i < m && next_j >= 0 && next_j < n && !seen[next_i][next_j]) {
ans[next_i][next_j] = ans[cur_i][cur_j] + 1;
seen[next_i][next_j] = true;
queue.offer(new int[]{next_i, next_j});
}
}
}
return ans;
}
}