描述
树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n
个节点 (节点值 1~n
) 的树中添加一条边后的图。添加的边的两个顶点包含在 1
到 n
中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n
的二维数组 edges
,edges[i] = [ai, bi]
表示图中在 ai
和 bi
之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n
个节点的树。如果有多个答案,则返回数组 edges
中最后出现的边。
示例
示例 1:
输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]
示例 2:
输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
提示
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
edges
中无重复元素- 给定的图是连通的
解题思路
方法一:并查集
在一棵树中,边的数量比节点的数量少 1。如果一棵树有 n 个节点,则这棵树有 n−1 条边。这道题中的图在树的基础上多了一条附加的边,因此边的数量也是 n。
树是一个连通且无环的无向图,在树中多了一条附加的边之后就会出现环,因此附加的边即为导致环出现的边。
可以通过并查集寻找附加的边。初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。
- 如果两个顶点属于不同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间不连通,因此当前的边不会导致环出现,合并这两个顶点的连通分量。
- 如果两个顶点属于相同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间已经连通,因此当前的边导致环出现,为附加的边,将当前的边作为答案返回。
代码
class Solution {
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;
int[] parent = new int[n + 1];
for (int i = 1; i <= n; i++) {
parent[i] = i;
}
for (int i = 0; i < n; i++) {
int[] edge = edges[i];
int node1 = edge[0], node2 = edge[1];
if (find(parent, node1) != find(parent, node2)) {
union(parent, node1, node2);
} else {
return edge;
}
}
return new int[0];
}
public void union(int[] parent, int index1, int index2) {
parent[find(parent, index1)] = find(parent, index2);
}
public int find(int[] parent, int index) {
if (parent[index] != index) {
parent[index] = find(parent, parent[index]);
}
return parent[index];
}
}
复杂度分析
时间复杂度:O(nlogn),其中 n 是图中的节点个数。需要遍历图中的 n 条边,对于每条边,需要对两个节点查找祖先,如果两个节点的祖先不同则需要进行合并,需要进行 2 次查找和最多 1 次合并。一共需要进行 2n 次查找和最多 n 次合并,因此总时间复杂度是 O(2nlogn)=O(nlogn)。这里的并查集使用了路径压缩,但是没有使用按秩合并,最坏情况下的时间复杂度是 O(nlogn),平均情况下的时间复杂度依然是 O(nα(n)),其中 α 为阿克曼函数的反函数,α(n) 可以认为是一个很小的常数。
空间复杂度:O(n),其中 n 是图中的节点个数。使用数组 parent 记录每个节点的祖先。