描述

给定一个链表数组,每个链表都已经按升序排列。
请将所有链表合并到一个升序链表中,返回合并后的链表。

示例

示例 1:

  1. 输入:lists = [[1,4,5],[1,3,4],[2,6]]
  2. 输出:[1,1,2,3,4,4,5,6]
  3. 解释:链表数组如下:
  4. [
  5. 1->4->5,
  6. 1->3->4,
  7. 2->6
  8. ]
  9. 将它们合并到一个有序链表中得到。
  10. 1->1->2->3->4->4->5->6

示例 2:

1
2
输入:lists = []
输出:[]

示例 3:

1
2
输入:lists = [[]]
输出:[]

提示

  • k == lists.length
  • 0 <= k <= 10^4
  • 0 <= lists[i].length <= 500
  • -10^4 <= lists[i][j] <= 10^4
  • lists[i]升序 排列
  • lists[i].length 的总和不超过 10^4

解题思路

方法一:分治合并

  • 将 k 个链表配对并将同一对中的链表合并;
  • 第一轮合并以后, k 个链表被合并成了 k/2 个链表,平均长度为 2n/k,然后是 k/4 个链表,k/8 个链表等等;
  • 重复这一过程,直到我们得到了最终的有序链表。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        return merge(lists, 0, lists.length - 1);
    }

    public ListNode merge(ListNode[] lists, int l, int r) {
        if (l == r) {
            return lists[l];
        }
        if (l > r) {
            return null;
        }
        int mid = (l + r) >> 1; //右移一位,等同于(l + r)/2,效率更高
        return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));
    }

    public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }
}

复杂度分析

时间复杂度:渐进时间复杂度为 O(kn×logk)。
空间复杂度:递归会使用到 O(logk) 空间代价的栈空间。

方法二:使用优先队列合并

维护当前每个链表没有被合并的元素的最前面一个,k 个链表就最多有 k 个满足这样条件的元素,每次在这些元素里面选取 val 属性最小的元素合并到答案中。在选取最小元素的时候,我们可以用优先队列来优化这个过程。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution {
    class Status implements Comparable<Status> {
        int val;
        ListNode ptr;

        Status(int val, ListNode ptr) {
            this.val = val;
            this.ptr = ptr;
        }

        public int compareTo(Status status2) {
            return this.val - status2.val;
        }
    }

    PriorityQueue<Status> queue = new PriorityQueue<Status>();

    public ListNode mergeKLists(ListNode[] lists) {
        for (ListNode node: lists) {
            if (node != null) {
                queue.offer(new Status(node.val, node));
            }
        }
        ListNode head = new ListNode(0);
        ListNode tail = head;
        while (!queue.isEmpty()) {
            Status f = queue.poll();
            tail.next = f.ptr;
            tail = tail.next;
            if (f.ptr.next != null) {
                queue.offer(new Status(f.ptr.next.val, f.ptr.next));
            }
        }
        return head.next;
    }
}

复杂度分析

时间复杂度:考虑优先队列中的元素不超过 k 个,那么插入和删除的时间代价为 O(logk),这里最多有 kn 个点,对于每个点都被插入删除各一次,故总的时间代价即渐进时间复杂度为 O(kn×logk)。
空间复杂度:这里用了优先队列,优先队列中的元素不超过 k 个,故渐进空间复杂度为 O(k)。