描述
给定一个由 0
和 1
组成的非空二维数组 grid
,用来表示海洋岛屿地图。
一个 岛屿 是由一些相邻的 1
(代表土地) 构成的组合,这里的「相邻」要求两个 1
必须在水平或者竖直方向上相邻。你可以假设 grid
的四个边缘都被 0
(代表水)包围着。
找到给定的二维数组中最大的岛屿面积。如果没有岛屿,则返回面积为 0
。
示例
示例 1:
输入: grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
输出: 6
解释: 对于上面这个给定矩阵应返回 6。注意答案不应该是 11 ,因为岛屿只能包含水平或垂直的四个方向的 1 。
示例 2:
输入: grid = [[0,0,0,0,0,0,0,0]]
输出: 0
提示
m == grid.length
n == grid[i].length
1 <= m, n <= 50
grid[i][j] is either 0 or 1
解题思路
这道题的思路并不难,关键在于代码,三种方法都要掌握。
方法一:深度优先搜索
算法
- 我们想知道网格中每个连通形状的面积,然后取最大值。
- 如果我们在一个土地上,以 4 个方向探索与之相连的每一个土地(以及与这些土地相连的土地),那么探索过的土地总数将是该连通形状的面积。
- 为了确保每个土地访问不超过一次,我们每次经过一块土地时,将这块土地的值置为 0。这样我们就不会多次访问同一土地。
代码
class Solution {
public int maxAreaOfIsland(int[][] grid) {
int ans = 0;
for (int i = 0; i != grid.length; ++i) {
for (int j = 0; j != grid[0].length; ++j) {
ans = Math.max(ans, dfs(grid, i, j));
}
}
return ans;
}
public int dfs(int[][] grid, int cur_i, int cur_j) {
if (cur_i < 0 || cur_j < 0 || cur_i == grid.length || cur_j == grid[0].length || grid[cur_i][cur_j] != 1) {
return 0;
}
grid[cur_i][cur_j] = 0;
int[] di = {0, 0, 1, -1};
int[] dj = {1, -1, 0, 0};
int ans = 1;
for (int index = 0; index != 4; ++index) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
ans += dfs(grid, next_i, next_j);
}
return ans;
}
}
方法二:深度优先搜索 + 栈
算法
我们可以用栈来实现深度优先搜索算法。这种方法本质与方法一相同,唯一的区别是:
- 方法一通过函数的调用来表示接下来想要遍历哪些土地,让下一层函数来访问这些土地。而方法二把接下来想要遍历的土地放在栈里,然后在取出这些土地的时候访问它们。
- 访问每一片土地时,我们将对围绕它四个方向进行探索,找到还未访问的土地,加入到栈
stack
中; - 另外,只要栈
stack
不为空,就说明我们还有土地待访问,那么就从栈中取出一个元素并访问。
代码
class Solution {
public int maxAreaOfIsland(int[][] grid) {
int ans = 0;
for (int i = 0; i != grid.length; ++i) {
for (int j = 0; j != grid[0].length; ++j) {
int cur = 0;
Deque<Integer> stacki = new LinkedList<Integer>();
Deque<Integer> stackj = new LinkedList<Integer>();
stacki.push(i);
stackj.push(j);
while (!stacki.isEmpty()) {
int cur_i = stacki.pop(), cur_j = stackj.pop();
if (cur_i < 0 || cur_j < 0 || cur_i == grid.length || cur_j == grid[0].length || grid[cur_i][cur_j] != 1) {
continue;
}
++cur;
grid[cur_i][cur_j] = 0;
int[] di = {0, 0, 1, -1};
int[] dj = {1, -1, 0, 0};
for (int index = 0; index != 4; ++index) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
stacki.push(next_i);
stackj.push(next_j);
}
}
ans = Math.max(ans, cur);
}
}
return ans;
}
}
方法三:广度优先搜索
算法
我们把方法二中的栈改为队列,每次从队首取出土地,并将接下来想要遍历的土地放在队尾,就实现了广度优先搜索算法。
代码
class Solution {
public int maxAreaOfIsland(int[][] grid) {
int ans = 0;
for (int i = 0; i != grid.length; ++i) {
for (int j = 0; j != grid[0].length; ++j) {
int cur = 0;
Queue<Integer> queuei = new LinkedList<Integer>();
Queue<Integer> queuej = new LinkedList<Integer>();
queuei.offer(i);
queuej.offer(j);
while (!queuei.isEmpty()) {
int cur_i = queuei.poll(), cur_j = queuej.poll();
if (cur_i < 0 || cur_j < 0 || cur_i == grid.length || cur_j == grid[0].length || grid[cur_i][cur_j] != 1) {
continue;
}
++cur;
grid[cur_i][cur_j] = 0;
int[] di = {0, 0, 1, -1};
int[] dj = {1, -1, 0, 0};
for (int index = 0; index != 4; ++index) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
queuei.offer(next_i);
queuej.offer(next_j);
}
}
ans = Math.max(ans, cur);
}
}
return ans;
}
}
复杂度分析
- 时间复杂度:O(R×C)。其中 R 是给定网格中的行数,C 是列数。我们访问每个网格最多一次。
- 空间复杂度:O(R×C),队列中最多会存放所有的土地,土地的数量最多为 R×C 块,因此使用的空间为 O(R×C)。