题目:

给你一个整数 n ,表示比赛中的队伍数。比赛遵循一种独特的赛制:

  • 如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛,且产生 n / 2 支队伍进入下一轮。
  • 如果当前队伍数为 奇数 ,那么将会随机轮空并晋级一支队伍,其余的队伍配对。总共进行 (n - 1) / 2 场比赛,且产生 (n - 1) / 2 + 1 支队伍进入下一轮。

返回在比赛中进行的配对次数,直到决出获胜队伍为止。

示例 1:
输入:n = 7
输出:6
解释:比赛详情:
- 第 1 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。
- 第 2 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。
- 第 3 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。
总配对次数 = 3 + 2 + 1 = 6

示例 2:
输入:n = 14
输出:13
解释:比赛详情:
- 第 1 轮:队伍数 = 14 ,配对次数 = 7 ,7 支队伍晋级。
- 第 2 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。
- 第 3 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。
- 第 4 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。
总配对次数 = 7 + 3 + 2 + 1 = 13

提示:
1 <= n <= 200

解答:

模拟求解:

  1. class Solution {
  2. public int numberOfMatches(int n){
  3. int sum = 0;
  4. while(n>1){
  5. if(n%2==0){
  6. sum=sum+n/2;
  7. n=n/2;
  8. }else{
  9. sum=sum+(n-1)/2;
  10. n=(n-1)/2+1;
  11. }
  12. }
  13. return sum;
  14. }
  15. }

搞笑求解:

共有n个队伍,一个冠军,需要淘汰n-1个 队伍。每一场比赛淘汰一个队伍,因此进行了n-1场比赛。所以共有n-1个配对。

  1. class Solution {
  2. public int numberOfMatches(int n) {
  3. return n-1;
  4. }
  5. }