前序遍历(DLR,lchild,data,rchild),是二叉树遍历的一种,也叫做先根遍历、先序遍历、前序周游,可记做根左右。前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。
前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问 根结点,然后遍历左子树,最后遍历右子树。
若 二叉树为空则结束返回,否则:
(1)访问根结点。
(2)前序遍历左子树 。
(3)前序遍历右子树 。
需要注意的是:遍历左右子树时仍然采用前序遍历方法。
如图所示
前序遍历结果:ABDECF
其实在遍历二叉树的时候有三次遍历, 比如前序遍历:A->B->D->D(D左子节点并返回到D)->D(D右子节点并返回到D)->B->E->E(左)->E(右)->->B->A->C->F->F(左)->F(右)->C->C(右),可以用递归的方式,递归的输出当前节点,然后递归的输出左子节点,最后递归的输出右子节点。直接看代码更能理解:
package test0910;
public class Test {
public static void main(String[] args) {
TreeNode[] node = new TreeNode[10];// 以数组形式生成一棵完全二叉树
for (int i = 0; i < 10; i++) {
node[i] = new TreeNode(i);
}
for (int i = 0; i < 10; i++) {
if (i * 2 + 1 < 10)
node[i].left = node[i * 2 + 1];
if (i * 2 + 2 < 10)
node[i].right = node[i * 2 + 2];
}
preOrderRe(node[0]);
}
public static void preOrderRe(TreeNode biTree) {
if (biTree == null)
return;
else {
System.out.print(biTree.value + " ");
preOrderRe(biTree.left);
preOrderRe(biTree.right);
}
}
}
//节点结构
class TreeNode {
int value;
TreeNode left;
TreeNode right;
TreeNode(int value) {
this.value = value;
}
}